

# High Integrated Dimmable LED Controller with Spread Spectrum Frequency Modulation for Automotive Headlight

#### **DESCRIPTION**

TS19501CB10H is a single channel LED driver of low-side-current sense. This device can operate in DCM, BCM and CCM mode with full protection and diagnostics. This device is dedicated and suited for automotive headlight. This controller supports typical topologies such as boost, buck-boost and SEPIC.

Output current regulation is based on average current mode control supervised by a control loop. The fault flag is connected to pull-up resistor from  $V_{\text{DC}}$  for highlighting the information of fault and fault status flag is latched by the timer when output is low.

#### **APPLICATION**

- Automotive LED Lighting: High and low Beam, Daytime Running Light, Turn indicator, Position Light, Fog Light
- · General Lighting Applications
- High Brightness LED Applications

#### **FEATURES**

- AEC-Q100 qualified with the following results:
  - Device temperature grade 1: -40°C to 125°C
  - Device HBM ESD classification level H2
  - Device CDM ESD classification level C6
- Drives LEDs in Boost, Buck-Boost and SEPIC Topology
- Operation in DCM, BCM, CCM mode
- Input Voltage 4.5V ~ 42V
- Adjustable Switching Frequency 70k ~ 700kHz
- Low-Side Current Sense
- Internal Voltage Reference 150mV ±3.3%
- Both PWM Dimming and Analog Dimming
- Over Voltage Protection (OVP)
- Over Current Protection (OCP)
- Over Temperature Protection (OTP)
- Under Voltage Lockout (UVLO)
- Jitter function for effective spread spectrum to reduce EMI
- Fault Status flag and Internal Soft Start
- to RoHS Compliant
- Halogen-Free according to IEC 61249-2-21

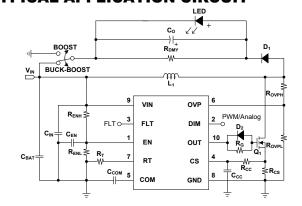




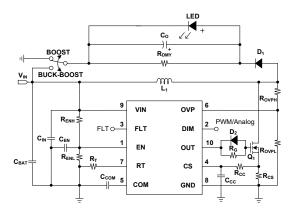


#### MSOP-10EP




Notes: MSL 3 (Moisture Sensitivity Level) per J-STD-020

#### Pin Definition:


1

| 1. EN  | 10. OUT |
|--------|---------|
| 2. DIM | 9. VIN  |
| 3. FLT | 8. GND  |
| 4. CS  | 7. RT   |
| 5. COM | 6. OVP  |

# TYPICAL APPLICATION CIRCUIT



**Buck-Boost Regulator** 



**Boost Regulator** 



# Taiwan Semiconductor

| ABSOLUTE MAXIMUM RATINGS (T <sub>A</sub> = 25°C unless otherwise specified) (Note 1) |                   |             |      |  |  |
|--------------------------------------------------------------------------------------|-------------------|-------------|------|--|--|
| PARAMETER                                                                            | SYMBOL            | LIMIT       | UNIT |  |  |
| Battery power input Pin                                                              | V <sub>IN</sub>   | -0.3 to 42  | V    |  |  |
| FLT output to GND                                                                    | $V_{FLT}$         | -0.3 to 42  | V    |  |  |
| OUT voltage to GND                                                                   | V <sub>OUT</sub>  | -0.3 to 20  | V    |  |  |
| EN voltage to GND                                                                    | V <sub>EN</sub>   | -0.3 to 5.5 | V    |  |  |
| DIM voltage to GND                                                                   | V <sub>DIM</sub>  | -0.3 to 5.5 | V    |  |  |
| CS voltage to GND                                                                    | V <sub>cs</sub>   | -0.3 to 5.5 | V    |  |  |
| COM voltage to GND                                                                   | V <sub>COM</sub>  | -0.3 to 5.5 | V    |  |  |
| OVP voltage to GND                                                                   | V <sub>OVP</sub>  | -0.3 to 5.5 | V    |  |  |
| RT voltage to GND                                                                    | $V_{RT}$          | -0.3 to 5.5 | V    |  |  |
| Junction Temperature Range                                                           | TJ                | -40 to +150 | °C   |  |  |
| Storage Temperature Range                                                            | T <sub>STG</sub>  | -65 to +150 | °C   |  |  |
| Lead Temperature (Soldering 10 sec)                                                  | T <sub>LEAD</sub> | 260         | °C   |  |  |
| Power Dissipation @ T <sub>A</sub> =25°C                                             | P <sub>D</sub>    | 1.1         | W    |  |  |
| ESD Rating (Human Body Model)                                                        | НВМ               | ±2          | kV   |  |  |
| ESD Rating (Charged Device Model)                                                    | CDM               | ±1          | kV   |  |  |

| THERMAL PERFORMANCE (Note 2)           |                |     |      |
|----------------------------------------|----------------|-----|------|
| PARAMETER                              | SYMBOL         | TYP | UNIT |
| Thermal Resistance Junction to Ambient | $R_{	heta JA}$ | 113 | °C/W |
| Thermal Resistance Junction to Case    | $R_{	heta JC}$ | 38  | °C/W |

| RECOMMENDED OPERATING CONDITION (T <sub>A</sub> = 25°C unless otherwise specified) (Note 3) |                  |             |      |  |
|---------------------------------------------------------------------------------------------|------------------|-------------|------|--|
| PARAMETER                                                                                   | SYMBOL           | LIMIT       | UNIT |  |
| Battery power input Pin                                                                     | V <sub>IN</sub>  | 8 to 38     | V    |  |
| FLT output to GND                                                                           | $V_{FLT}$        | 0 to 38     | V    |  |
| OUT voltage to GND                                                                          | V <sub>OUT</sub> | 0 to 18     | V    |  |
| EN voltage to GND                                                                           | V <sub>EN</sub>  | 0 to 5      | V    |  |
| DIM voltage to GND                                                                          | $V_{DIM}$        | 0 to 5      | V    |  |
| CS voltage to GND                                                                           | V <sub>CS</sub>  | 0 to 0.8    | V    |  |
| COM voltage to GND                                                                          | V <sub>COM</sub> | 1.2 to 3.6  | V    |  |
| OVP voltage to GND                                                                          | V <sub>OVP</sub> | 1.6 to 3.1  | V    |  |
| RT voltage to GND                                                                           | $V_{RT}$         | 1.2         | V    |  |
| Storage Temperature Range                                                                   | T <sub>STG</sub> | -55 to +150 | °C   |  |
| Operating Junction Temperature Range                                                        | TJ               | -40 to +150 | °C   |  |
| Operating Ambient Temperature Range                                                         | T <sub>OPA</sub> | -40 to +125 | °C   |  |



# TS19501CB10H Taiwan Semiconductor

| PARAMETER                         | SYMBOL                | CONDITION                                   | MIN  | TYP   | MAX  | UNIT            |
|-----------------------------------|-----------------------|---------------------------------------------|------|-------|------|-----------------|
| Supply Voltage                    |                       |                                             |      |       |      |                 |
| V <sub>IN</sub> Turn-on Threshold | V <sub>IN_ON</sub>    |                                             | 3.8  | 4.3   | 4.8  | V               |
| V <sub>IN</sub> Hysteresis        | V <sub>HYS</sub>      |                                             |      | 0.2   |      | V               |
| EN Turn-on Threshold              | V <sub>EN_ON</sub>    |                                             | 1.05 |       | 1.35 | V               |
| EN Hysteresis Current             | I <sub>HYS_EN</sub>   |                                             | 10   | 20    | 30   | μA              |
| Quiescent Current                 | IQ                    |                                             | 80   | 160   | 240  | μΑ              |
| Operating Supply Current          | I <sub>IN</sub>       | R <sub>RT</sub> =50kohm                     | 1    |       | 4    | mA              |
| GM Amplifier                      |                       |                                             | 1    | 1     |      | •               |
| Internal Reference Voltage        | $V_{REF}$             |                                             | 140  | 150   | 160  | mV              |
| Transconductance                  | G <sub>m</sub>        | I <sub>COM_SINK</sub> /0.4                  | 80   | 100   | 120  | μA/V            |
| Sink Current                      | I <sub>COM_SINK</sub> | V <sub>CS</sub> = 400mV                     |      | 40    |      | μΑ              |
| Source Current                    | I <sub>COM_SOUR</sub> | V <sub>CS</sub> = 0V                        |      | 15    |      | μA              |
| Oscillator                        |                       |                                             | 1    | 1     |      | •               |
| Oscillator Frequency              | Fosc                  | R <sub>RT</sub> =50kohm                     | 185  | 200   | 215  | kHz             |
| Jitter Frequency                  | F <sub>JT</sub>       | Design Guarantee                            |      | ±8.5  |      | %               |
| Soft Start Time                   | T <sub>SS</sub>       |                                             |      | 1024  |      |                 |
| Fault Blank Time                  | T <sub>FB</sub>       |                                             |      | 2048  |      | Clock<br>Cycles |
| Hiccup Time                       | T <sub>HUP</sub>      |                                             |      | 32768 |      | - Cycles        |
| Driver                            |                       |                                             | 1    | 1     |      | •               |
| Dropout Voltage                   | V <sub>OH</sub>       | VIN=12V, C <sub>O</sub> =1nF<br>IO= 10mA    |      | 530   | 700  | mV              |
| Dropout voltage                   | V <sub>OL</sub>       | $V_{IN}$ =12V, $C_{O}$ =1nF $I_{O}$ = -10mA |      | 50    | 90   | mV              |
| Output Rising Time                | $T_R$                 | C <sub>O</sub> =1nF                         |      | 40    |      | ns              |
| Output Falling Time               | $T_F$                 | C <sub>O</sub> =1nF                         |      | 30    |      | ns              |
| Output Clamp Voltage              | $V_{O\_CLAMP}$        | C <sub>O</sub> =1nF                         |      | 12.5  | 12.8 | ٧               |
| Protection                        |                       |                                             |      |       |      |                 |
| Output Voltage Protection         | V <sub>OVP</sub>      |                                             | 3.0  | 3.25  | 3.5  | ٧               |
| Short Circuit Protection          | $V_{SCP}$             |                                             | 1.4  |       | 1.6  | V               |
| Current Limit Voltage             | V <sub>CSL</sub>      |                                             | 720  | 820   | 920  | mV              |
| Leading Edge Blanking Time        | LEB <sub>t</sub>      | C <sub>O</sub> =1nF                         |      | 350   | 500  | ns              |
| MOS Current Protection            | $V_{MCP}$             | C <sub>O</sub> =1nF                         | 1.1  | 1.23  | 1.4  | V               |
| FLT Dropout Voltage               | V <sub>FLT</sub>      | I <sub>FLT</sub> =10mA                      |      | 200   |      | mV              |
| Maximum Duty                      | $V_{DUTY}$            | C <sub>O</sub> =1nF                         |      | 85    |      | %               |

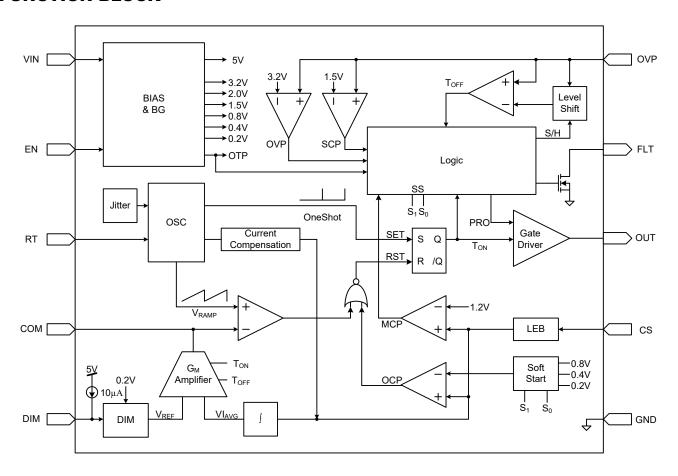
# Taiwan Semiconductor

| ELECTRICAL SPECIFICATIONS (T <sub>A</sub> = 25°C unless otherwise specified) |                  |           |     |     |      |      |
|------------------------------------------------------------------------------|------------------|-----------|-----|-----|------|------|
| PARAMETER                                                                    | SYMBOL           | CONDITION | MIN | TYP | MAX  | UNIT |
| Dimming                                                                      |                  |           |     |     |      |      |
| PWM Dimming High Threshold Voltage                                           | Vон_DIM          |           | 2.5 |     |      | V    |
| Analog Dimming Threshold Voltage of 100% Current Regulation                  | VMAX_DIMA        |           | 1.5 | 1.6 | 1.7  | V    |
| Source Current of DIM                                                        | Ідім             |           | 7.2 | 10  | 12.8 | μA   |
| Thermal Section (Note 4, 5)                                                  |                  |           |     |     |      |      |
| Thermal Shutdown                                                             | TSD              |           |     | 165 |      | °C   |
| Temperature Hysteresis                                                       | T <sub>HYS</sub> |           |     | 30  |      | °C   |

#### Note:

Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. Functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the
specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device
reliability.

4


- 2. Test boards conditions:
  - (a) 5.6mm × 4mm, 2 layers, thickness: 1mm.
  - (b) 1-oz copper traces located on the top of the PCB.
  - (c) 1-oz copper ground plane, bottom layer.
  - (d) 5-thermal vias (0.3mm) located under the device package.
- 3. The device is not guaranteed to function outside its operating conditions.
- 4. Guaranteed by design.
- 5. Auto Recovery type.

### **ORDERING INFORMATION**

| ORDERING CODE |                  | PACKAGE   | PACKING            |  |
|---------------|------------------|-----------|--------------------|--|
|               | TS19501CB10H RBG | MSOP-10EP | 5,000pcs / 13"Reel |  |



# **FUNCTION BLOCK**



#### **PIN DESCRIPTION**

| PIN NO.     | NAME | FUNCTION                                            |
|-------------|------|-----------------------------------------------------|
| 1           | EN   | Enable and shut down pin                            |
| 2           | DIM  | PWM/Analog dimming voltage input                    |
| 3           | FLT  | Open drain output pin for fault status flag.        |
| 4           | CS   | Input current sense pin.                            |
| 5           | COM  | Compensation output pin of error amplifier.         |
| 6           | OVP  | Over voltage sensing pin                            |
| 7           | RT   | Connect external resistor to GND to set frequency.  |
| 8           | GND  | Ground return for all internal circuitry.           |
| 9           | VIN  | Battery power input pin for all internal circuitry. |
| 10          | OUT  | Power MOS output pin.                               |
| Thermal pad |      | No internal connection                              |

5



#### **TYPICAL PERFORMANCE CURVES**

 $V_{IN}$ =12V,  $I_{LED}$ =600mA,  $V_{O}$ =24V (8 LEDs) unless otherwise specified.

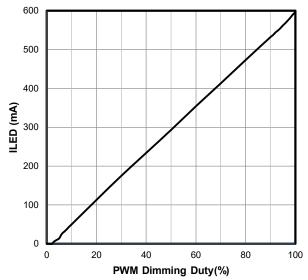



Figure 1. ILED vs. PWM Dimming Duty

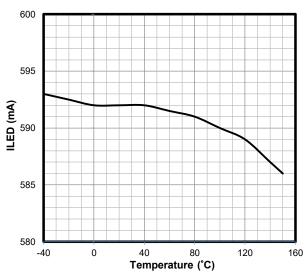



Figure 3. ILED vs. Temperature

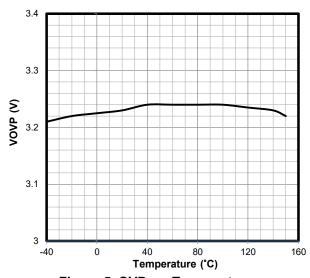



Figure 5. OVP vs. Temperature

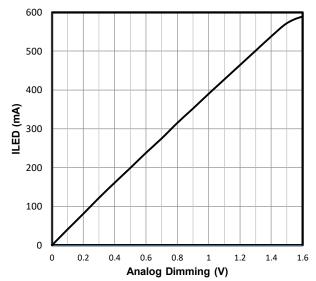



Figure 2. ILED vs. Analog Dimming

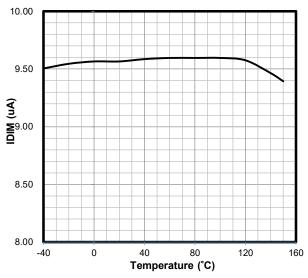
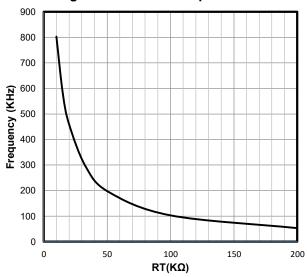
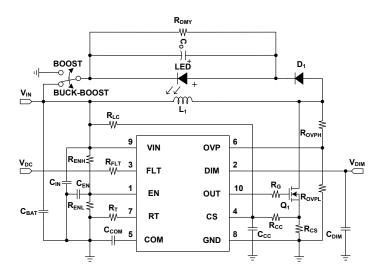
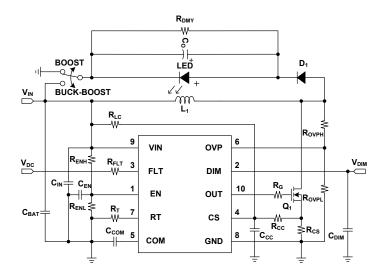
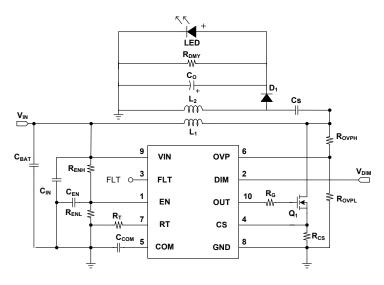



Figure 4. IDIM vs. Temperature



Figure 6. Frequency vs. RT




# **TYPICAL APPLICATION CIRCUITS**



# **Buck-Boost Regulator**



#### **Boost Regulator**



**SEPIC** 



#### **APPLICATION INFORMATION**

The TS19501CB10H uses an external current sense resistor ( $R_{CS}$ ) between the MOSFET source and the GND to convert the input power. The MOSFET ON current signal and  $V_{REF}$  are input to the GM amplifier. The special GM amplifier follows the design formula to combine the  $T_{ON}$  and  $T_{OFF}$  information which are forced to be equal potential through system negative feedback.

The average LED current can be expressed as below.

$$I_{LED\_avg} = \frac{V_{REF}}{R_{CS}}$$

#### Where:

- I<sub>LED avg</sub> is the average LED current
- V<sub>REF</sub> is the internal reference voltage (150mV)
- R<sub>CS</sub> is the sensing resistor connected between the MOSFET source and the GND

#### **Pin Definitions**

#### **EN Pin**

The EN pin can sense  $V_{IN}$  information by voltage divider resister. The hysteresis current ( $I_{EN}$ ) is  $20\mu A$  when the divider voltage is over  $V_{EN\ ON}$ .

#### **DIM Pin**

A PWM and analog dimming function is applied in TS19501CB10H. The analog dimming range is an DC voltage from 0V to 1.6V. PWM dimming function is the same pin of analog dimming. The current regulation is decided by duty cycle of external PWM signal. Built-in 10µA source current is for NTC resistance application.

#### FLT Pin

Open drain output for fault status flag.

#### **CS Pin**

MOSFET current signal sensing and current limit setting function.

$$I_{CS(LIMIT)} = \frac{0.8}{R_{CS}}$$

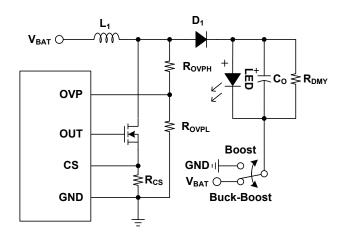
#### Where:

- I<sub>CS(LIMIT)</sub> is the input current limit
- R<sub>CS</sub> is the sensing resistor connected between the MOSFET source and GND

#### **COM Pin**

This is the output of the G<sub>m</sub> amplifier. Connect with a suitable RC network to ground.




#### **APPLICATION INFORMATION**

#### **Pin Definitions** (Continue)

# OVP Pin

The Output voltage is reflected by inductor voltage. The OVP pin can sense output information which it departs from start-up voltage ( $V_{SCP}$ ) and protect voltage ( $V_{OVP}$ ).

When the OVP sense voltage under  $V_{SCP}$  a period of time (8 clock cycles), The short circuit protection (SCP) will work. When the OVP sense voltage over  $V_{OVP}$  a period of time (8 clock cycles), the over voltage protection (OVP) will work. it will attempt to recover after every 32768 clock cycles.



For Boost

$$Vo_{OVP} = 3.2 \times \frac{Rovph + Rovpl}{Rovpl}$$

$$V_{O\_SCP} = 1.5 \times \frac{Rovph + Rovpl}{Rovpl}$$

For Buck-Boost and SEPIC

$$V_{O\_OVP} = \left(3.2 \times \frac{R_{OVPH} + R_{OVPL}}{R_{OVPL}}\right) - V_{BAT}$$

$$Vo\_SCP = \left(1.5 \times \frac{Rovph + Rovpl}{Rovpl}\right) - V_{BAT}$$

#### Where:

- V<sub>OVP</sub> is the output-over-voltage protection point (3.2V)
- V<sub>SCP</sub> is the output-short-circuit protection point (1.5V)

#### RT Pin

This pin is to program the operation frequency by connecting a resistor to ground.

Reference formula as below:

$$Fs = \frac{1}{1 \times 10^{-10} \times R_T}$$

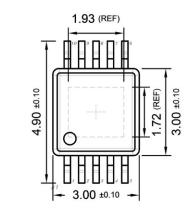
#### **GND Pin**

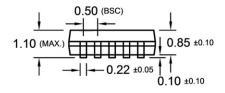
GND is the reference node of internal circuit.

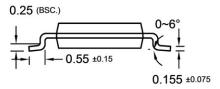
#### **VIN Pin**

Power supply input for the controller during normal operation. The controller will start up when  $V_{IN}$  reaches 4.2V (typical) and will shut-down when  $V_{IN}$  voltage is below 4.0V (typical) when  $V_{EN}$  over 1.2V. A decoupling capacitor should be connected between the  $V_{IN}$  and GND pin as close as possible.

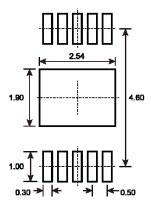
9


#### **OUT Pin**


Gate drive for external MOSFET switch and built-in gate clamp function.




# PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)


#### MSOP-10EP







# SUGGESTED PAD LAYOUT (Unit: Millimeters)



# **MARKING DIAGRAM**



Y = Year Code

M = Month Code for Halogen Free Product

O =Jan P =Feb Q =Mar

Q =Mar R =Apr

10

S =May T =Jun l

 $U = Jul \quad V = Aug$ 

**W** =Sep **X** =Oct

Y =Nov Z =Dec

**L** = Lot Code (1~9, A~Z)



Taiwan Semiconductor

#### Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.