Low-Power, High-Performance Bioimpedance Analog Front-End

General Description

The MAX30009 is a complete Bioimpedance (BioZ) Analog Front-End (AFE) solution for wearable applications. It offers high performance for fitness, wellness, and clinical applications, and ultra-low power for long battery life. The BioZ receive channel has Electrostatic Discharge (ESD) protection, Electromagnetic Interference (EMI) filtering, internal lead-biasing, DC leads-off detection, DRVN leadoff detection, and ultra-low power lead-on detection during standby mode. The BioZ receive channel also has high input impedance, low noise, high Common-Mode Rejection Ratio (CMRR), programmable gain, various low-pass and high-pass filter options, and two high resolution analog-todigital converters for simultaneous I and Q acquisition.
The BioZ transmit channel has a sine-wave current generator to drive AC currents into the body with a wide frequency range of 16 Hz to 806 kHz and a wide magnitude range of $16 \mathrm{nA}_{\text {RMS }}$ to $1.28 \mathrm{~mA}_{\text {RMS }}$. The transmit channel can also operate in the sine-wave voltage and H -bridge modes. The flexible input/output MUX allows for both bipolar and tetrapolar measurements with multiple sets of electrodes.
For measurements requiring high absolute impedance accuracy such as Bioimpedance Analysis/Spectroscopy (BIA/BIS) and Automated External Defibrillator (AED) body impedance, the MAX30009 offers several calibration options. An external precision resistor can be connected to the four-wire calibration port for the highest accuracy. Internal trimmed resistors also provide high accuracy.
The PLL-based timing subsystem allows for a wide range of fine-tuned stimulus and sampling frequencies, and can be synchronized with other Analog Devices biosensors for simultaneous data collection.
The MAX30009 is available in a $2.03 \mathrm{~mm} \times 2.03 \mathrm{~mm}$, 25-bump Wafer-Level Package (WLP), operating over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Applications

- Wearable Fitness, Wellness, and Medical Devices
- Multifrequency Body Composition Analyzers
- Non-Invasive Hemodynamic Monitors
- Automatic External Defibrillators
- Optimized Performance to Accurately Detect:
- Respiration Rate
- Galvanic Skin Response/Electrodermal Activity
- Bioimpedance Spectroscopy
- Body Composition and Fluid Analysis
- Impedance Cardiography and Plethysmography

Benefits and Features
 BIOZ

- Complete High-Performance BioZ AFE
- Simultaneous I and Q Measurement Capability
- Four-Electrode (Tetrapolar) and Two-Electrode (Bipolar) Configurations
- Ultra-Low Power Operation
- $250 \mu \mathrm{~W}$ at 1.8V AVDD
- High-Resolution, 20-Bit Sigma Delta Analog-to-Digital Converters (ADCs)
- Wide Range of Sample Rates from 16sps to 4ksps
- Flexible and Programmable Input/Output MUX
- Low-Noise, High-Resolution Receive Channel - 17 Bits Effective Resolution with $1.1 \mu \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ Noise
- High Input Impedance >1G Ω for Extremely Low Common to Differential-Mode Conversion
- Programmable Sine-Wave Stimulus
- Low Frequency, Low Current Options for Galvanic Skin Response (GSR)/Electrodermal Activity (EDA) Starting from 16 Hz and $16 n A_{\text {RMS }}$
- Wide Range of Bioelectrical Impedance Analysis/ Spectroscopy (BIA/BIS) Frequencies from 1 kHz to 806kHz
- High Currents at High Frequencies for Impedance Cardiography (ICG) Applications (e.g.,1.28mARMS at 100 kHz) with Lockout for Lower Frequencies for Conformance with 60601-1
- High Input AC Dynamic Range of $>1000 \mathrm{mV} V_{\text {P-P }}$
- 4-Pin In-Situ Calibration Port (4-Wire Precision Resistor) Enables High-Quality Absolute Impedance Measurements
- DC Leads-Off Detect Capability
- Ultra-Low Power Lead-On Detection with Interrupt for System Wake-Up.
- Lead-On Detect Current: 0.7 HA (typ)

SYSTEM

- Shutdown Current of $0.6 \mu \mathrm{~A}$ (Typ)
- 256 Word FIFO
- Flexible PLL-Based Timing Subsystem with Internal or External Clock Source
- PLL can be Synchronized with Adjacent Biosensor AFEs (such as the MAX86176 Photoplethsymography (PPG)/Electrocardiography (ECG) AFE)
- Configurable Interrupts Reduce $\mu \mathrm{C}$ Wake-Up Time and Save Power
- High-Speed Serial Peripheral Interface (SPI) and $\mathrm{I}^{2} \mathrm{C}$ Digital Interface

MAX30009
 Low-Power, High-Performance Bioimpedance Analog Front-End

Simplified Block Diagram

Low-Power, High-Performance Bioimpedance Analog Front-End

TABLE OF CONTENTS

General Description 1
Applications 1
Benefits and Features 1
Simplified Block Diagram 2
Absolute Maximum Ratings 7
Package Information 7
WLP 7
Electrical Characteristics 7
Typical Operating Characteristics 16
Pin Configuration 20
WLP 20
Pin Description 20
Detailed Description 22
Timing Subsystem 22
Clock Sources 23
Phase-Locked Loop (PLL) and PLL Synchronization 23
Sequence of Operation When PLL is Used 24
Enabling and Disabling the PLL 24
Entering and Exiting Shutdown 24
Soft-Reset Sequence 24
PLL Synchronization 24
PLL Synchronization Using the TRIG Pin 24
PLL Synchronization Using the Broadcast Command 26
BioZ Sample Rate and Stimulus Frequency 27
FIFO Description 31
BioZ 31
BioZ Start-up and Shutdown 33
BioZ Transmit Channel 33
Sine-Wave Current Stimulus 33
Sine-Wave Voltage Stimulus 35
Square-Wave Voltage (H-Bridge) Stimulus 36
BioZ Receive Channel 37
BioZ Decimation and Digital Filters 38
Converting Digitized BioZ Samples to Voltage and Impedance 38
BioZ Noise Measurements 39
BioZ Input/Output MUX 40
BioZ EMI Filtering and ESD Protection 41
BioZ Lead Bias 41
Programmable BioZ Resistor Load 42

> Low-Power, High-Performance Bioimpedance Analog Front-End

TABLE OF CONTENTS (CONTINUED)

BioZ Lead-Off Detection 42
BioZ Ultra-Low-Power (ULP) Lead-On Detection 45
BioZ Calibration 46
Improving Accuracy of BIA/BIS Measurements 48
Digital Interface 49
Serial Peripheral Interface (SPI) 49
Single-Word SPI Register Read and Write Transactions 49
SPI Burst-Mode Read Transaction 50
$I^{2} \mathrm{C}-/$ SMBus-Compatible Serial Interface 51
Bit Transfer 52
START and STOP Conditions 52
${ }^{2}$ ² Slave Address 53
Acknowledge Bit. 53
${ }^{2} \mathrm{C}$ Write Data Format 54
${ }^{2}{ }^{2} \mathrm{C}$ Read Data Format 55
${ }^{2}$ 2 C Broadcast 56
Register Map 58
User Register Map 58
Register Details 60
Applications Information 89
Patient Safety 89
Typical Application Circuits 90
4-Electrode Device Supporting BIA/BIS, Respiration, or ICG 90
2-Electrode Device Supporting GSR/EDA 91
4-Electrode Wrist Device Supporting BIA and GSR 92
2-Electrode Chest Device Supporting Respiration with ECG and PPG 93
2-Electrode Chest Device Supporting Respiration with ECG and Defibrillation Protection 94
6-Electrode Device Supporting Multiple Measurement Vectors 95
Ordering Information 95
Revision History 96

Low-Power, High-Performance Bioimpedance Analog Front-End

LIST OF FIGURES

Figure 1. Timing Subsystem . 23
Figure 2. Timing System Synchronization with MAX30009 as a Master . 25
Figure 3. Timing System Synchronization with MAX30009 as a Slave . 26
Figure 4. Timing System Synchronization for MAX30009 Using the Broadcast Feature . 27
Figure 5. BioZ System Block Diagram . 32
Figure 6. BioZ Typical Application Areas . 33
Figure 7. Bioimpedance Stimulus Generator - Sine-Wave Current Mode . 35
Figure 8. Bioimpedance Stimulus Generator - Sine-Wave Voltage Mode . 36
Figure 9. Bioimpedance Stimulus Generator — H-Bridge Square-Wave Voltage Mode . 37
Figure 10. BioZ Receive Channel . 38
Figure 11. Square-Wave Demodulation for a Sine-Wave Stimulus (INA and PGA Gain Not Shown) 39
Figure 12. BioZ Input/Output MUX . 41
Figure 13. Programmable Resistor Load . 42
Figure 14. BioZ DC Lead-Off Behavior . 44
Figure 15. BioZ DC Lead-Off Detection with Internal Sense. 45
Figure 16. BioZ Threshold Behavior . 45
Figure 17. Calibration Port Connections . 48

Figure 19. SPI Write Transaction .

Figure 21. SPI FIFO Burst Mode Read Transaction . 51
Figure 22. Detailed I^{2} C Timing Diagram . 52
Figure 23. $I^{2} \mathrm{C}$ START, STOP, and REPEATED START Conditions . 53
Figure 24. $I^{2} \mathrm{C}$ Acknowledge Bit . 54
Figure 25. $I^{2} \mathrm{C}$ Single-Byte Write Transaction . 54
Figure 26. $I^{2} \mathrm{C}$ Multibyte Write Transaction . 55
Figure 27. $I^{2} \mathrm{C}$ Single-Byte Read Transaction . 56
Figure 28. $I^{2} \mathrm{C}$ Multibyte Read Transaction . 56
MAX30009 Low-Power, High-PerformanceBioimpedance Analog Front-End
LIST OF TABLES
Table 1. Example Calculations of BioZ Configuration Parameters for F_BIOZ < 54688Hz 28
Table 2. Example Calculations of BioZ Configuration Parameters for F_BIOZ > 54688Hz 28
Table 3. Common BioZ Stimulus Frequencies and Sample Rates with REF_CLK $=32.768 \mathrm{kHz}$ 29
Table 4. FIFO Data Format 31
Table 5. Stimulus Current Options 34
Table 6. BioZ Receive Channel Input-Referred Noise, 256sps 39
Table 7. Input-Referred Noise Frequency Settings 40
Table 8. BioZ Lead-Off Cases 43
Table 9. ${ }^{2}$ ²C Addresses for MAX30009 53
Table 10. Allowed Current Magnitudes vs. Frequency 89

Low-Power, High-Performance Bioimpedance Analog Front-End

Absolute Maximum Ratings	
AVDD to AGND ... 0.3 V to +2.2V	All Other Pins to AGND.....................................-0.3V to +2.2V
DVDD to DGND.. 0.3 V to +2.2V	Maximum Current into Any Pin $\pm 50 \mathrm{~mA}$
AVDD to DVDD .. 0.3 V to +0.3V	Operating Temperature Range $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DGND to AGND.. 0.3 V to +0.3V	Junction Temperature .. $+150^{\circ} \mathrm{C}$
SDI/SDA, SCLK/SCL, CSB/I2C_SEL to DGND -0.3 V to +5.5 V	Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
SDO/ADDR to DGND 0.3 V to +2.2V	Lead Temperature (Soldering, 10sec) $+300^{\circ} \mathrm{C}$
INT, TRIG to DGND... 0.3 V to +5.5V	Soldering Temperature (Reflow) $+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

WLP

Package Code	$\mathrm{N} 252 \mathrm{C} 2+1$
Outline Number	$\underline{21-100494}$
Land Pattern Number	Refer to Application Note 1891
Thermal Resistance, Four-Layer Board:	
Junction-to-Ambient $\left(\theta_{\mathrm{JA}}\right)$	$52.43^{\circ} \mathrm{C} / \mathrm{W}$

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/ thermal-tutorial.

Electrical Characteristics

(AVDD $=1.8 \mathrm{~V}, \mathrm{DVDD}=1.8 \mathrm{~V}, \mathrm{FCLK}=32.768 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \min / \mathrm{max}$ are from $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted, Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
BIOZ Characteristics / Receive Path							
ADC Resolution				20		bits	
ENOB		BIOZ_ADC_OSR $=128$		16.3		bits	
		BIOZ_ADC_OSR = 8		9.6			
ADC Sample Rate		Programmable, see Timing Subsystem		$\begin{aligned} & 16 \text { to } \\ & 4546 \end{aligned}$		sps	
Phase Measurement Accuracy at 50 kHz		Cole Impedance ($324 \Omega \\|$ ($232 \Omega+22 \mathrm{nF})$) load at 50 kHz after calibration, TA $=$ $+25^{\circ} \mathrm{C}$. (Note 2, Note 3)	-0.15		+0.15	deg	
		Cole Impedance (800Ω \|	($2500 \Omega+1 \mathrm{nF})$) load at 50 kHz after calibration, $\mathrm{TA}=$ $+25^{\circ} \mathrm{C}$. (Note 2, Note 3)	-0.1		+0.1	
Phase Measurement Accuracy at 16 Hz		$453 \mathrm{k} \Omega$ in series with 22 nF load at 16 Hz after calibration (Note 2), $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. BIOZ_DC_RESTORE feedback resistance enabled in parallel with the load.		± 1		deg	

Electrical Characteristics (continued)

(AVDD $=1.8 \mathrm{~V}, \mathrm{DVDD}=1.8 \mathrm{~V}, \mathrm{FCLK}=32.768 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \min / \mathrm{max}$ are from $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted, Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Phase Measurement Accuracy at 500 kHz		316Ω in series with 1 nF load at 500 kHz after calibration (Note 2), $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.		± 1		deg	
Phase Measurement Drift		Drift of impedance phase at 50 kHz after calibration (Note 2), drift relative to $\mathrm{T}_{\mathrm{A}}=$ $+25^{\circ} \mathrm{C}$.		± 0.003		$\mathrm{deg} /{ }^{\circ} \mathrm{C}$	
Magnitude Measurement Accuracy at 50 kHz		Cole Impedance (324Ω \|	($232 \Omega+22 n F)$) load at 50 kHz after calibration, TA $=$ $+25^{\circ} \mathrm{C}$. (Note 2, Note 3)	-0.1		+0.1	\%
		Cole Impedance (800Ω \|	($2500 \Omega+1 n F)$) load at 50 kHz after calibration, TA = $+25^{\circ} \mathrm{C}$. (Note 2, Note 3)	-0.1		+0.1	
Magnitude Measurement Accuracy at 16 Hz		$453 \mathrm{k} \Omega$ in series with 22 nF load at 16 Hz after calibration (Note 2), $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. BIOZ_DC_RESTORE feedback resistance enabled in parallel with the load.		± 1		\%	
Magnitude Measurement Accuracy at 500 kHz		316Ω in series with 1 nF load at 500 kHz after calibration (Note 2), $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.		± 1		\%	
Magnitude Measurement Drift		Drift of impedance magnitude at 50 kHz after calibration (Note 2), drift relative to $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 0.017		\%/ ${ }^{\circ} \mathrm{C}$	
Impedance Repeatability		$\mathrm{R}_{\text {BODY }}=100 \mathrm{k} \Omega$, conditions for GSR (Note 4)		2.53		$\Omega_{\text {RMS }}$	
		$R_{\text {BODY }}=680 \Omega$, conditions for respiration (Note 4)		8.94		$\mathrm{m} \Omega_{\text {RMS }}$	
		$R_{B O D Y}=25 \Omega$, conditions for ICG/AED body impedance (Note 4)		0.80			
DC Power Supply Rejection	PSRR	$\begin{aligned} & \mathrm{I}_{\mathrm{DRV}}=64 \mu \mathrm{~A}_{\text {RMS }}, \mathrm{F} \text { BIOZ }=1 \mathrm{kHz}, \\ & \text { BIOZ_GAIN }=10 \mathrm{~V} / \mathrm{V}, \mathrm{R}_{\mathrm{BODY}}=1 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\text {AVDD }}=\mathrm{V}_{\text {DVDD }}=1.7 \mathrm{~V} \text { to } 2.0 \mathrm{~V} \\ & \hline \end{aligned}$		900	7000	LSB/V	
		$V_{\text {DRV }}=100 \mathrm{mV} V_{\text {P-P }}, F_{-}$BIOZ $=64 \mathrm{~Hz}$, BIOZ_GAIN $=10 \mathrm{~V} / \mathrm{V}, \bar{V}_{\text {AVDD }}=\mathrm{V}_{\text {DVDD }}=$ 1.7 V to 2.0 V		150	1800		
Channel Gain		Selected by BIOZ_GAIN		1 to 10		V/V	
I vs. Q Channel Gain Matching		3σ with Cole Impedance (324Ω \|	$232 \Omega-22 \mathrm{nF}$) load at 50 kHz after calibration, TA $=+25^{\circ} \mathrm{C}$. (Note 2)		0.2		\%
AC Differential Input Signal		Shift from small-signal gain $<0.6 \%$, $\text { BIOZ_GAIN }=1 \mathrm{~V} / \mathrm{N}, \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz}$			1000	$m V_{\text {P-P }}$	
Input Referred Voltage Noise (BIP, BIN)		Integrated Noise BW $=0.05$ to 100 Hz , Gain = 10x, Current Drive Off, BIN = BIP = VCM		1.0		$\mu \mathrm{V}_{\text {RMS }}$	
Input Referred Current Noise		DRVP and DRVN Disconnected, BIOZ_GAIN $=10 \mathrm{~V} / \mathrm{V}, \mathrm{F}$ BIOZ $=65.5 \mathrm{kHz}$, SR_BIOZ $=256$ sps, BIOZ_DLPF $=64 \mathrm{~Hz}$, 200MO Lead Bias, BIOZ_A HPF $=5 \mathrm{kHz}$		300		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$	

Electrical Characteristics (continued)

(AVDD $=1.8 \mathrm{~V}, \mathrm{DVDD}=1.8 \mathrm{~V}, \mathrm{FCLK}=32.768 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \min / \mathrm{max}$ are from $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted, Note 1)

Electrical Characteristics (continued)

(AVDD $=1.8 \mathrm{~V}, \mathrm{DVDD}=1.8 \mathrm{~V}, \mathrm{FCLK}=32.768 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \min / \mathrm{max}$ are from $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted, Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Current-Drive Accuracy		$\mathrm{I}_{\text {DRV }} \geq 32 \mathrm{nA} \mathrm{A}_{\text {RMS }}$	-6		+6	\%
		$\mathrm{I}_{\text {DRV }}=16 \mathrm{nA} \mathrm{A}_{\text {RMS }}$	-10		+10	
Current-Drive Total Harmonic Distortion (THD)		$I_{\text {DRV }}=64 \mu A_{\text {RMS }}$, f $_{S T I M}=50 \mathrm{kHz}$, R $_{\text {BODY }}$ $=1 \mathrm{k} \Omega$. Include odd harmonics h3, h5, and h7.		0.07	0.3	\%
Current-Drive Temperature Coefficient				128		ppm $/{ }^{\circ} \mathrm{C}$
Current-Drive Power Supply Rejection		IDRV $=64 \mu \mathrm{~A}, \mathrm{DC}$ test mode		0.1		\%/V
Compliance Voltage		BIOZ_DRV_MODE[1:0] = current mode, current accuracy $\pm 1 \%$	0.2		$\begin{gathered} \hline \mathrm{V}_{\text {AVDD }}- \\ 0.2 \end{gathered}$	V
Compliance Monitor Thresholds		EN_DRV_OOR = 1	0.27		$\begin{gathered} \hline \mathrm{V}_{\text {AVDD }}- \\ 0.35 \end{gathered}$	V
Drive Frequency Range		See BIOZ_FREQ_DIV[3:0]		$\begin{gathered} 0.016 \text { to } \\ 500 \end{gathered}$		kHz
Drive Common-Mode Voltage	$\mathrm{V}_{\text {MID_TX }}$	Voltage at DRVSJ in current mode	0.79	0.81	0.83	V
BIOZ Characteristics / Digital Filter						
Output Digital Low-Pass Filter		BIOZ_DLPF[2:0] = 0x1		$\begin{gathered} 0.005 x \\ \text { SR_BIO } \\ \bar{Z} \end{gathered}$		Hz
		BIOZ_DLPF[2:0] = 0x2		$\begin{gathered} 0.02 \times \\ \text { SR_BIO }_{\bar{Z}} \end{gathered}$		
		BIOZ_DLPF[2:0] $=0 \times 3$		$\begin{gathered} 0.08 \mathrm{x} \\ \mathrm{SR}_{\overline{\mathrm{Z}}} \mathrm{BIO} \end{gathered}$		
		BIOZ_DLPF[2:0] $\geq 0 \times 4$		$\begin{gathered} 0.25 \mathrm{x} \\ \mathrm{SR} \quad \mathrm{BIO} \\ \overline{\mathrm{Z}} \end{gathered}$		
Output Digital High-Pass Filter		BIOZ_DHPF[1:0] = 0x1		$\begin{gathered} 0.00025 \\ x \\ \text { SR_BIO } \\ \frac{Z}{z} \end{gathered}$		Hz
		BIOZ_DHPF[1:0] $\geq 0 \times 2$		$\begin{aligned} & 0.002 \mathrm{x} \\ & \mathrm{SR} \text { BIO } \\ & \frac{\mathrm{Z}}{} \end{aligned}$		
BIOZ I/O Mux / DC Leads Off						
Full-Scale Current		Selected by LOFF_IMAG[2:0]		$\begin{gathered} 5.5, \\ 11.3, \\ 22.5,55, \\ 110 \\ \hline \end{gathered}$		nA
Full-Scale Current Accuracy		LOFF_IMAG = 110nA	-40		+40	\%
Comparator Threshold	$\mathrm{V}_{\text {THH }}, \mathrm{V}_{\text {THL }}$	Selectable by DC_LOFF_THRESH[3:0]	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{MID}} \\ & \pm 200 \end{aligned}$		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{MID}} \\ & \pm 695 \end{aligned}$	mV

Electrical Characteristics (continued)
(AVDD $=1.8 \mathrm{~V}, \mathrm{DVDD}=1.8 \mathrm{~V}, \mathrm{FCLK}=32.768 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \min / \mathrm{max}$ are from $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted, Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Comparator Threshold Accuracy		LOFF_THRESH $=\mathrm{V}_{\text {MID_RX }} \pm 425 \mathrm{mV}$		-5		+5	\%
Full-Scale Electrode Resistance		LOFF_IMAG $=100 n A$, LOFF_THRESH $=$ $V_{\text {MID_RX }} \pm 210 \mathrm{mV}$			4		
		LOFF_IMAG $=10 \mathrm{nA}$, LOFF_THRESH $=$ $\mathrm{V}_{\text {MID_RX }} \pm 660 \mathrm{mV}$			100		
BIOZ I/O Mux / Lead Bias							
Lead Bias Impedance		Lead bias enabled.	$\begin{aligned} & \text { RBIAS_VALUE = } \\ & 0 \times 0 \end{aligned}$		50		$\mathrm{M} \Omega$
			$\begin{aligned} & \text { RBIAS_VALUE = } \\ & 0 \times 1 \end{aligned}$		100		
			$\begin{aligned} & \text { RBIAS_VALUE = } \\ & 0 \times 2 \end{aligned}$		200		
Lead Bias Voltage		Lead bias enabled		0.76	0.81	0.84	V
BIOZ I/O Mux / Internal Resisitive Loads							
Internal BIA Resistive Load Nominal Value	RVAL	Selected by BMUX_RSEL			$\begin{aligned} & 280, \\ & 600, \\ & 900, \\ & 5100 \end{aligned}$		Ω
Internal GSR Resistive Load Nominal Value	$\mathrm{R}_{\mathrm{GSR}}$	Selected by BMUX_GSR_RSEL			$\begin{gathered} 25.7, \\ 101, \\ 505,100 \\ 0 \end{gathered}$		k Ω
Timing Subsystem							
PLL Lock Time		Change in FCLK to FREQ_LOCK asserted, MDIV $=0 \times 328$			2	5	ms
FCLK Input Frequency		Must match CLK_FREQ_SEL			$\begin{aligned} & 32.0 \text { or } \\ & 32.768 \end{aligned}$		kHz
Maximum FCLK Rise Time (10% to 90%)	$t_{\text {RISE }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } 1.8 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}= \\ & 15 \mathrm{pF} \end{aligned}$			100		ns
Maximum FCLK Fall Time (90% to 10%)	${ }^{\text {t }}$ FALL	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } 1.8 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}= \\ & 15 \mathrm{pF} \end{aligned}$			100		ns
PLL External Reference Jitter		Cycle-to-cycle period, PLL_LOCK_WNDW = 0			3		nsRMS
Internal FCLK	$\mathrm{FCLK}_{\text {INT }}$	$\begin{aligned} & \text { CLK_FREQ_SEL = } \\ & 32.0 \mathrm{kHz} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-1	± 0.4	+1	\%
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	-2.5	± 0.4	+2.5	
	$\mathrm{FLCK}_{\text {INT }}$	$\begin{aligned} & \text { CLK_FREQ_SEL = } \\ & 32.7 \overline{6} 8 \mathrm{kHz} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-1	± 0.4	+1	
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	-2.5	± 0.4	+2.5	
Internal Reference							
Reference Output Voltage	$\mathrm{V}_{\text {REF }}$	$\mathrm{TA}=+25^{\circ} \mathrm{C}$		0.985	1	1.015	V
Reference Temperature Coefficient	TCREF				42		ppm $/{ }^{\circ} \mathrm{C}$

Electrical Characteristics (continued)
(AVDD $=1.8 \mathrm{~V}, \mathrm{DVDD}=1.8 \mathrm{~V}, \mathrm{FCLK}=32.768 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \min / \mathrm{max}$ are from $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted, Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
BIA Supply Current						
VAVDD Supply Voltage	$\mathrm{V}_{\text {AVDD }}$	Verified during Power-Supply Rejection Ratio (PSRR) tests	1.7	1.8	2.0	V
V ${ }_{\text {DVD }}$ Supply Voltage	$\mathrm{V}_{\text {DVDD }}$	Verified during Power-Supply Rejection Ratio (PSRR) tests	1.7	1.8	2.0	V
BIA Supply Current (BIA/BIS Example at 1 KHz)	${ }^{\text {IAVDD }}{ }^{+}$ l DVDD	PLL_CLK = 16.384MHz, F_BIOZ = 1kHz (KDIV $=64, M=500$, FCLK $=32768 \mathrm{~Hz}$, BIOZ_DAC_OSR = 256); BIOZ_DRV_MODE = current; BIOZ_INA_MODE = low power; BIOZ_GAIN $=10 \mathrm{~V} / \mathrm{V}$; SR_BIOZ $=$ 62.5sps (NDIV $=512$, BIOZ_ADC_OSR = $512)$; $I_{M A G}=32 \mu A ;$ I and Q ADCs enabled; Digital filters bypassed		926		$\mu \mathrm{A}$
BIA Supply Current (BIA/BIS Example at 50 KHz)	I AVDD $^{+}$ lovDD	PLL_CLK $=25.591808 \mathrm{MHz}$, F_BIOZ $=$ 49.984 kHz (KDIV $=2, \mathrm{M}=78 \overline{1}$, FCLK $=$ 32768 Hz, BIOZ_DAC_OSR = 256); BIOZ_DRV_MODE = current; BIOZ_INA_MODE = low noise; BIOZ_GAIN $=10 \mathrm{~V} / \mathrm{V}$; SR_BIOZ $=$ 48.8125 sps (NDIV $=102 \overline{4}$, BIOZ_ADC_OSR = 512); $\mathrm{I}_{\mathrm{MAG}}=32 \mu \mathrm{~A} ; \mathrm{I}$ and Q ADCs enabled; Digital filters bypassed		1222	2700	$\mu \mathrm{A}$
BIA Supply Current (BIA/BIS Example at 100 KHz)	${ }^{\text {IAVDD }}+$ l DVDD	PLL_CLK = 25.591808 MHz , F_BIOZ = $99.968 \mathrm{kHz}(\mathrm{KDIV}=2, \mathrm{M}=781$, $\mathrm{FCLK}=$ 32768 Hz, BIOZ_DAC_OSR = 128); BIOZ_DRV_MODE = current; BIOZ_INA_MODE = low noise; BIOZ_GAIN $=10 \mathrm{~V} / \mathrm{V}$; SR_BIOZ $=$ 48.8125 sps (NDIV $=102 \overline{4}$, BIOZ_ADC_OSR $=512$); $\mathrm{I}_{\mathrm{MAG}}=32 \mu \mathrm{~A}$; I and Q ADCs enabled; Digital filters bypassed		1227		$\mu \mathrm{A}$
BIA Supply Current (BIA/BIS Example at 250 KHz)	lavDd $^{+}$ lovDD	PLL_CLK = 15.990784 MHz, F_BIOZ $=$ 249.856 kHz (KDIV $=1, \mathrm{M}=488$, $\mathrm{FCLK}=$ 32768 Hz, BIOZ_DAC_OSR $=64$); BIOZ_DRV_MODE = current; BIOZ_INA_MODE = low noise; BIOZ_GAIN $=10 \mathrm{~V} / \mathrm{V}$; SR_BIOZ $=61 \mathrm{sps}$ (NDIV = 512, BIOZ_ADC_OSR = 512); $I_{\text {MAG }}=32 \mu \mathrm{~A}$; I and \bar{Q} ADCs enabled; Digital filters bypassed		1148	2700	$\mu \mathrm{A}$
BIA Supply Current (BIA/BIS Example at 500 KHz)	${ }^{\text {IAVDD }}{ }^{+}$ l DVDD	PLL_CLK = 15.990784 MHz, F_BIOZ $=$ $499 . \overline{7} 12 \mathrm{kHz}$ (KDIV $=1, \mathrm{M}=48 \overline{8}$, $\mathrm{FCLK}=$ 32768 Hz , BIOZ_DAC_OSR = 32); BIOZ_DRV_MODE = current; BIOZ_INA_MODE = low noise; BIOZ_GAIN $=10 \mathrm{~V} / \mathrm{V}$; SR_BIOZ $=61 \mathrm{sps}$ (NDIV = 512, BIOZ_ADC_OSR = 512); $I_{M A G}=32 \mu A ; I$ and \bar{Q} ADCs enabled; Digital filters bypassed		1192		$\mu \mathrm{A}$

Electrical Characteristics (continued)
(AVDD $=1.8 \mathrm{~V}, \mathrm{DVDD}=1.8 \mathrm{~V}, \mathrm{FCLK}=32.768 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \min / \mathrm{max}$ are from $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted, Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX

Electrical Characteristics (continued)

(AVDD $=1.8 \mathrm{~V}, \mathrm{DVDD}=1.8 \mathrm{~V}, \mathrm{FCLK}=32.768 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \min / \mathrm{max}$ are from $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted, Note 1)

Electrical Characteristics (continued)
(AVDD $=1.8 \mathrm{~V}, \mathrm{DVDD}=1.8 \mathrm{~V}, \mathrm{FCLK}=32.768 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \min / \mathrm{max}$ are from $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted, Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
CSB Fall to SCLK Rise Setup Time	${ }^{\mathrm{t}} \mathrm{CSSO}$	Applies to first SCLK rising edge after CSB goes low.		20			ns
CSB Fall to SCLK Rise Hold Time	${ }^{\text {t }} \mathrm{CSH} \mathrm{O}$	Applies to inactive rising edge preceding first rising edge.		5			ns
Last SCLK Rise to CSB Rise	${ }^{\mathrm{t}} \mathrm{CSH} 1$	Applies to last SCLK rising edge in a transaction.		20			ns
Last SCLK Rise to Next CSB Fall	${ }^{\text {t CSF }}$	Applies to last SCLK rising edge to next CSB falling edge (new transaction).		60			ns
CSB Pulse-Width High	tcspw			40			ns
SDI to SCLK Rise Setup Time	$t_{\text {DS }}$			5			ns
SDI to SCLK Rise Hold Time	$t_{\text {DH }}$			5			ns
SCLK Fall to SDO Transition	tDot	$C_{\text {LOAD }}=30 \mathrm{pF}$				15	ns
CSB Fall to SDO Enabled	tooe	$\mathrm{C}_{\text {LOAD }}=0 \mathrm{pF}$		10			ns
CSB Rise to SDO Hi-Z	$\mathrm{t}_{\mathrm{DOZ}}$	Disable Time				5	ns
TRIG Pulse-Width	${ }^{\text {tTRIG }}$			$\begin{gathered} 1 \mathrm{x} \\ \mathrm{t}_{\mathrm{FCLK}} \end{gathered}$			s
ESD PROTECTION							
E1, E2A, E2B, C1, C2, C3, C4, E3A, E3B, E4		IEC61000-4-2	Contact Discharge		± 8		kV
			Air Discharge		± 6		

Note 1: Limits are 100% tested at $\mathrm{TA}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. All register settings use default values, unless otherwise noted in specific EC conditions.
Note 2: Overall accuracy must include calibration resistor accuracy and overall calibration accuracy. Calibration uses an external $32.768 \mathrm{kHz}, 2.5 \mathrm{nsRMS}$ jitter, $\pm 5 \mathrm{ppm}$ TC oscillator with a 680Ω external calibration resistor. The calibration resistor and Cole impedance are measured to within 0.05% magnitude and 0.1° phase accuracy using a calibrated Zurich Instruments MFIA.
Note 3: Guaranteed by design and characterization. Not tested in production.
Note 4: a. BIOZ DRV MODE $=0 \times 0, \operatorname{IDRV}=160 \mathrm{nARMS}, \mathrm{F}, \mathrm{BIOZ}=16 \mathrm{~Hz}, \mathrm{SR} \quad \mathrm{BIOZ}=16 \mathrm{sps}, \mathrm{BIOZ}$ GAIN $=10 \mathrm{~V} / \mathrm{V}, \mathrm{BIOZ} _\mathrm{DLPF}=$ $0 \times 4, \mathrm{BIOZ} \mathrm{AHPF}=24 \mathrm{M} \Omega$ with external 47 nF BIP and BIN capacitors. Effective signal band $=\overline{\mathrm{D} C}$ to 4 Hz . b. BIOZ DRV MODE $=0 \times 0$, IDRV $=32 \mu A R M S, ~ F _B I O Z=32 \mathrm{kHz}, \mathrm{SR} _\mathrm{BIOZ}=31.25 \mathrm{sps}, \mathrm{BIOZ} _\mathrm{GAIN}=10 \mathrm{~V} / \mathrm{V}$, BIOZ_DLPF $=0 \times 3$, BIOZ $\bar{A} H P F=2 \mathrm{kHz}$. Effective signal band $=\mathrm{DC}$ to 2.5 Hz .
c. BIOZ DR \bar{V} _MODE $=0 \times 0$, IDRV $=1.28 \mathrm{mARMS}, \mathrm{F}_{-} \mathrm{BIOZ}=64 \mathrm{kHz}, \mathrm{SR} _\mathrm{BIOZ}=250 \mathrm{sps}, \mathrm{BIOZ}$ GAIN $=10 \mathrm{~V} / \mathrm{V}, \mathrm{BIOZ}$ AHPF $=5 \mathrm{kHz}$. Effective signal band = DC to 62.5 Hz .

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{DVDD}}=\mathrm{V}_{\mathrm{AVDD}}=+1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DVDD}}=\mathrm{V}_{\mathrm{AVDD}}=+1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DVDD}}=\mathrm{V}_{\mathrm{AVDD}}=+1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. .

BIOZ DRIVE VOLTAGE vs. LOAD RESISTANCE

BIOZ DRIVE VOLTAGE vs. LOAD RESISTANCE

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{DVDD}}=\mathrm{V}_{\mathrm{AVDD}}=+1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Pin Configuration
WLP
(BUMPSIDEDOWN)

Pin Description

PIN	NAME	FUNCTION
Power	AVDD	Analog Core Supply Voltage. Bypass to AGND with a $0.1 \mu F$ and a 10 equivalent effective capacitance.
C1	DVDD 0603 capacitor or	
D1	Digital Core Supply Voltage. Bypass to DGND with a $0.1 \mu \mathrm{~F}$ and a 10 $\mu \mathrm{F}$ X5R 0603 capacitor or equivalent effective capacitance.	
C3	AGND	Analog Power and Reference Ground. Connect to the PCB ground plane.
E1	DGND	Digital Ground for both Digital Core and I/O Pad Drivers. Recommended to connect to AGND plane.
Electrode Connections	EL1	Electrode 1 Connection. EL1 is normally connected to the DRVP current generator output, but can be switched to the receive channel's BIP input under program control.
A1	EL2A	Electrode 2A Connection. EL2A or EL2B are normally connected to the receive channel's BIP input, but can be switched to connect to the DRVP current generator output under program control. Two EL2 inputs are provided to use the device for both GSR/EDA applications that require an external AC-coupling capacitor and BIA/BIS applications that use the internal AHPF, and thus do not require an external AC-coupling capacitor.
A2	EL2B	Electrode 2B Connection. See description for EL2A. A3

Low-Power, High-Performance Bioimpedance Analog Front-End

Pin Description (continued)

PIN	NAME	FUNCTION
B1	EL4	Electrode 4 Connection. EL4 is normally connected to the DRVN current generator output, but can be switched to the receive channel's BIN input under program control.
B2	EL3A	Electrode 3A Connection. EL3A or EL3B are normally connected to the receive channel's BIN input, but can be switched to connect to the DRVN current generator output under program control. Two EL3 inputs are provided to use the device for both GSR/EDA applications that require an external AC-coupling capacitor and BIA/BIS applications that use the internal AHPF, and thus do not require an external AC-coupling capacitor.
B3	EL3B	Electrode 3B Connection. See description for EL3A.
Calibration Support		
A4	CAL1	Calibration Port 1. Connects the internal DRVP node to an external reference resistor when calibration is enabled.
A5	CAL2	Calibration Port 2. Connects the internal BIP node to an external reference resistor when calibration is enabled.
B5	CAL3	Calibration Port 3. Connects the internal BIN node to an external reference resistor when calibration is enabled.
B4	CAL4	Calibration Port 4. Connects the internal DRVN node to an external reference resistor when calibration is enabled.
PLL		
D3	FCLK	External Clock Input. Connect to a 32.0 kHz or 32.768 kHz external clock source (optional). When not used, it can be left unconnected.
Control Interface		
E4	SCLK/SCL	SPI Clock in SPI Mode or $\mathrm{I}^{2} \mathrm{C}$ Clock in $\mathrm{I}^{2} \mathrm{C}$ Mode.
E3	SDI/SDA	SPI Data Input in SPI Mode or ${ }^{2} \mathrm{C}$ Data Input and Output in $\mathrm{I}^{2} \mathrm{C}$ Mode.
E2	SDO/ADDR	SPI Data Output in SPI Mode or ${ }^{2} \mathrm{C}$ C Address Select in $\mathrm{I}^{2} \mathrm{C}$ Mode. Do not leave unconnected.
D2	$\begin{gathered} \hline \text { CSB/ } \\ \text { I2C_SEL } \end{gathered}$	Active-Low Chip Select Input in SPI Mode. Pull high or connect to DVDD to select $I^{2} \mathrm{C}$ Mode. Do not leave unconnected.
E5	INT	Interrupt Output. INT is a programmable active-high/active-low status output. It can be used to interrupt an external device. When not used, it can be left unconnected.
D4	TRIG	PLL Synchronization Input. When not used, connect to DGND.
Reference		
C2	$V_{\text {REF }}$	ADC Reference Buffer Output. Connect a $1 \mu \mathrm{~F}$ X5R ceramic capacitor between $\mathrm{V}_{\text {REF }}$ and AGND.
C4	DRVSJ	Drive Summing Junction Connection. Virtual AC ground in current mode.
C5	DRVXR	Drive Amplifier External Resistor. Connect a precision resistor between DRVXR and DRVXC if setting the BioZ drive current externally. Leave unconnected if using internal current settings.
D5	DRVXC	Drive Amplifier External Capacitor. Connect a 47nF capacitor between DRVXC and DRVSJ to ACcouple the $V_{D R V}$ and $I_{D R V}$ amplifiers in sine-wave current-drive applications. Otherwise, short DRVXC to DRVSJ.

Detailed Description

The MAX30009 is a complete, integrated data acquisition system ideal for respiration, Galvanic Skin Response (GSR) and Electrodermal Activity (EDA), Bioimpedance Analysis/Spectroscopy (BIA/BIS), Impedance Cardiography (ICG), and numerous other applications. It is designed for the demanding requirements of medical, mobile, and wearable devices, and requires minimal external hardware components for integration.

The BioZ transmit channel has an independent current stimulus circuit to provide injected body currents. The stimulus current generation circuit can be supplied in a four-electrode (tetrapolar) as well as two-electrode (bipolar) manner. This injected current is programmable and available over a wide frequency range (16 Hz to 806 kHz) and a wide range of stimulus current magnitudes ($16 n A_{R M S}$, up to $1.28 m_{R M S}$ maximum). These ranges support Galvanic Skin Response (GSR) and Electrodermal Activity (EDA) measurements, Bioimpedance Analysis/Spectroscopy (BIA/BIS) applications, and Impedance Cardiography (ICG) measurements such as cardiac output and stroke volume, or Impedance Plethysmography (IPG) measurements.
The BioZ receive channel also has high input impedance, low noise, high Common-Mode Rejection Ratio (CMRR), programmable gain, various low-pass and high-pass filter options, two high-resolution analog-to-digital converters, and simultaneous I and Q measurement capability to provide resistance and reactance measurements for BIA/BIS applications. It also includes DC lead-off detection, drive lead-off detection, ultra-low-power lead-on detection during standby mode, and extensive calibration features and programmable resistive loads for built-in self-test. Soft power-up sequencing ensures no large transients are injected into the electrodes.
The MAX30009 provides a calibration port for a four-wire external precision reference resistance to use during calibration. This calibration is required when using the MAX30009 for bioimpedance measurements needing absolute accuracy such as BIA/BIS or Automated External Defibrillator (AED) body-impedance. The four-wire calibration port can also be used to support multiple calibration resistances. Alternatively, there are trimmed load resistors internal to the device that can be used for calibration, but they are not as accurate as using an external reference resistor.
The MAX30009 is fully adjustable through software registers and the digital output data is stored in a 256 -word FIFO. The FIFO allows the MAX30009 to be connected to a microcontroller or processor on a shared $\mathrm{I}^{2} \mathrm{C}$ or Serial Peripheral Interface (SPI) bus. The MAX30009 operates in fully autonomous mode for low-power battery applications. The MAX30009 operates on a 1.8 V main supply voltage, and can be configured for low-power consumption, enabling long battery life.

Timing Subsystem

The MAX30009 timing subsystem is shown in Figure 1, which includes all the register bits and formulas needed for setting the BioZ sample rate and stimulus frequency. REF_CLK is sourced either from an external oscillator on the FCLK or from the internal slow oscillator clock INT_FCLK, depending on the REF_CLK_SEL[6](0x1D) setting. The MAX30009 timing system offers a great deal of flexibility. However, certain considerations must be taken into account when configuring the timing system. The following sections describe these considerations in detail.

NOTE: BITFIELD NAMES IN THE ABOVE EQUATIONS REPRESENT DECODED VALUES, NOT BINARY VALUES. SEE THE REGISTER MAP FOR DECODE INFORMATION.
Figure 1. Timing Subsystem

Clock Sources

The MAX30009 timing system incorporates two internal slow oscillators, 32.0 kHz and 32.768 kHz , and the oscillator with the desired frequency can be selected by setting CLK_FREQ_SEL[5](0x1D). If REF_CLK_SEL[6](0x1D) $=0$, the internal slow oscillator selected by CLK_FREQ_SEL provides the reference clock to the PLL circuit used as the time base for the BioZ channel. If REF_CLK_ $\bar{S} E L=1$, the oscillator on the FCLK (either 32.0 kHz or 32.768 kHz) becomes the source of REF_CLK. Even when using the external oscillator on FCLK, the CLK_FREQ_SEL must be set according to the frequency of the external clock source. Use a low-jitter external oscillator with < 347 ppm of frequency accuracy to meet IEC60601-2-47 timing accuracy compliance. The FCLK source must be an active-drive clock, not only a crystal.
The two internal slow oscillators, 32.0 kHz and 32.768 kHz in MAX30009, are factory trimmed and exhibit a drift with temperature (primary cause of drift) of less than $\pm 1 \%$ over the temperature range of $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. If this level of stability is inadequate, then the MAX30009 offers a fine adjust register CLK_FINE_TUNE[4:0](0x1D), which can be used in combination with a highly stable crystal based Real-Time Clock (RTC) oscillator in the host microcontroller to trim out the drift of the on-chip slow oscillator. By counting the time between the MAX30009 generated interrupts using the microcontroller-based RTC, it is possible to compute the error in the slow oscillator frequency and trim it to within $\pm 0.1 \%$ (typ) of the microcontroller-based RTC. Using this approach, it is possible to achieve accuracy near that of a crystal oscillator as the phase noise of the MAX30009 slow oscillator is low and the drift is primarily due to temperature.

Phase-Locked Loop (PLL) and PLL Synchronization

The MAX30009 timing subsystem in Figure 1 allows the use of an internal PLL synchronized to either an internal or external clock source used by the BioZ channel.
The PLL generates an output clock (PLL_CLK) that operates over a 14 MHz to 28 MHz frequency range. The frequency of PLL_CLK is selected by the frequency of REF_CLK and the M divider value, which is set in MDIV[9:0](0x18, 0x19),

```
where \(\mathrm{M}=\mathrm{MDIV}+1\).
```

The 10-bit MDIV register field must be set such that the PLL output frequency (PLL_CLK) is between 14 MHz and 28 MHz . For a reference clock of 32.768 kHz , this means a valid MDIV range is 426 to $853(\mathrm{M}=427$ to 854$)$. For a reference clock of 32.0 kHz , this means a valid MDIV range of 437 to $874(\mathrm{M}=438$ to 875$)$.
Soft-reset using RESET[0](0×11) is not allowed when PLL is enabled (PLL_EN[0] $(0 \times 18)=1$). The BioZ reference must be enabled $\left(B I O Z _B G _E N[2](0 \times 20)=1\right)$ before PLL_EN is set to 1 , and can take up to 6 ms to settle.

Sequence of Operation When PLL is Used

When enabling or disabling PLL, the proper sequence of operations must be followed. This section describes the recommended sequence of operations for various scenarios when PLL is used.

Enabling and Disabling the PLL

The following sequence is recommended when enabling and disabling the PLL.

- Disable BioZ, if enabled.
- Enable PLL by setting PLL_EN to 1.
- Wait for PLL to lock using either the FREQ_LOCK[3](0x02) or PHASE_LOCK[2](0x02) status bits.
- Enable BioZ I and Q, as needed.
- Disable BioZ when data collection is done.
- Disable PLL by setting PLL_EN to 0 .

Entering and Exiting Shutdown

The following sequence is recommended when putting the device into a shutdown state and to exit it.

- Disable BioZ, if enabled.
- Disable PLL by setting PLL_EN to 0, if enabled.
- Set SHDN to 1, to enter the shutdown mode.
- ...
- Set SHDN to 0 to enter the normal mode.
- Enable PLL by setting PLL_EN to 1.
- Enable BioZ I and Q as needed.
- ...

Soft-Reset Sequence

The following sequence is required when resetting the device using the RESET bit. Failure to follow this sequence may result in registers becoming unresponsive until a power-on reset is performed.

- Set BIOZ_BG_EN = 1 .
- Set SHDN = 0 .
- Set REF_CLK_SEL $=0$.
- Set PLL_EN = 0 .
- Wait for 1 ms .
- Set RESET = 1 to reset all registers.
- Enable PLL by setting PLL_EN to 1.
- ...

PLL Synchronization

The MAX30009 provides a PLL synchronization feature for use with multiple MAX30009, MAX86176, MAX30005, or MAX86178 AFEs in a system. This allows the PLLs of the multiple AFEs to remain synchronized and output synchronized samples. PLL synchronization uses either the TRIG pin or the broadcast feature. Both options are discussed as following.

PLL Synchronization Using the TRIG Pin

When the TRIG pin is used for PLL synchronization, one AFE is set up to act as a master and initiates the PLL and timing subsystem synchronization process, while the other(s) act(s) as a slave(s). Alternatively, all the AFEs together act as slaves and the microcontroller acts as the master of this process. In either case, all AFEs should use the same

Low-Power, High-Performance Bioimpedance Analog Front-End

external reference clock for the PLLs, and all the PLLs must be enabled and locked before generating a timing system reset pulse. The timing, when using the MAX30009 in a master configuration (MASTER[7](0x11) = 1), is shown in Figure 2. When acting as a master, TIMING_SYS_RESET[7](0x10) is set to 1. TIMING_SYS_RESET is a self-clearing bit and resets to 0 on the second rising edge of FCLK after it is asserted. Once the bit is cleared, the MAX30009 sends out a timing system reset pulse on the TRIG output after an internal time delay. On the first FCLK rising edge after the TRIG pin is pulled high by the timing system reset pulse, the N -divider of the master (if the AFE is the master) restarts its count at 0 .
The timing, when using the MAX30009 in a slave configuration (MASTER[7] $(0 \times 11)=0$), is shown in Figure 3 . In this mode, MAX30009 receives a timing system reset pulse on the TRIG pin. After the TRIG input is pulled high, the timing system reset signal is latched by the slave on the first falling edge of FCLK, as shown in Figure 3. On the first FCLK rising edge after the timing system reset pulse is latched on the TRIG input, the N-divider of the slave AFE device restarts its count at 0 . As the FCLK input to multiple devices uses the same clock source, the PLLs of all the devices in the system are synchronized automatically.
This is the recommended sequence for synchronizing PLLs on multiple devices using the TRIG pin:

- Disable BioZ by setting BIOZ_BG_EN[2](0x20), BIOZ_Q_EN[1](0x20), and BIOZ_I_EN[0](0x20) to 0, if enabled.
- Reset the part and flush the FIFO by setting SHDN[1](0x11) to 1.
- Then set SHDN $=0$ on all the parts.
- Wait for 6 ms .
- Program the configuration registers for BioZ as needed:
- To synchronize multiple devices, the BioZ sample rate should be the same on all devices.
- The broadcast feature can be used to program the common registers.
- Program FIFO_A_FULL[7:0](0x0D) as desired, and A_FULL_EN[7](0x80) $=1$ on the master device.
- Enable PLL by setting PLL_EN[0](0x18) to 1 on all the parts (using the broadcast feature or separately).
- Wait for PLL to lock on all the devices.
- Enable BioZ by setting BIOZ_BG_EN to 1, and BIOZ_Q_EN and BIOZ_I_EN as needed.
- Set TIMING_SYS_RESET to 1 on the master device. All the devices reset their N-dividers, and restart their state machines within the current clock cycle.
- Disable BioZ when data collection is done.
- Disable PLL by setting PLL_EN to 0.

Figure 2. Timing System Synchronization with MAX30009 as a Master

Figure 3. Timing System Synchronization with MAX30009 as a Slave

PLL Synchronization Using the Broadcast Command

PLLs on multiple AFEs can be synchronized using the broadcast feature if the TIMING_SYS_RESET[7](0x10) bit is at the same address in all the devices, and if all the PLLs use the same external reference clock for their PLLs.

Using the $\mathrm{I}^{2} \mathrm{C}$ Serial Interface:

Set I2C_BCAST_EN to 1, and I2C_BCAST_ADDR to the upper 7 bits of the broadcast address chosen for the system on all the AFEs with PLLs to be synchronized. Using this address as the Slave Address, write 1 to the TIMING_SYS_RESET bit.
Using the Serial Peripheral Interface (SPI):
Write 1 to the TIMING_SYS_RESET bits of all the AFEs in a single transaction by asserting their CSB inputs at the same time.
The internal timing reset pulse resets the BioZ N-divider in all the AFEs at the same time on the third rising edge of the FCLK after TIMING_SYS_RESET bit is set to 1 ; thus, synchronizing all the PLLs.
This is the recommended sequence for synchronizing PLLs on multiple MAX30009 devices using the broadcast feature:

- Disable BioZ by setting BIOZ_BG_EN[2](0x20), BIOZ_Q_EN[1](0x20), and BIOZ_I_EN[0](0x20) to 0, if enabled.
- Reset the part and flush the FIFO by setting SHDN[1](0x11) to 1.
- Then set SHDN = 0 on all the parts.
- Wait for 6 ms .
- Program the configuration registers for BioZ as needed:
- To synchronize multiple devices, the BioZ sample rate should be the same on all the parts.
- The broadcast feature can be used to program the common registers.
- Program FIFO_A_FULL[7:0](0x0D) as desired, and A_FULL_EN1[7](0x80) $=1$ on one of the parts, which becomes the primary part (other parts are secondary parts).
- Enable PLL by setting PLL_EN[0](0x18) to 1 on all the devices (using the broadcast feature or separately).
- Wait for PLL to lock on all devices.
- Enable BioZ by setting BIOZ_BG_EN to 1, and BIOZ_Q_EN and BIOZ_I_EN as needed using the broadcast feature.
- Using the broadcast feature, set TIMING_SYS_RESET to 1 on all the devices.
- All the devices reset the N -divider, and restart the state machines within the current clock cycle.
- Disable BioZ when data collection is done.

Note: TIMING_SYS_RESET can be set to 1 before or after enabling BioZ.

- Disable PLL by setting PLL_EN to 0 .

> Low-Power, High-Performance Bioimpedance Analog Front-End

Figure 4. Timing System Synchronization for MAX30009 Using the Broadcast Feature

BioZ Sample Rate and Stimulus Frequency

To make a BioZ measurement, set the following parameters, and then BIOZ_Q_EN[1](0x20) and BIOZ_I_EN[0](0x20) as needed.

The BioZ sample rate and stimulus frequencies depend on the state of the following fields:

- MDIV[9:0](0x17, 0x18)
- NDIV[7](0x17)
- KDIV[4:1](0x17)
- BIOZ_ADC_OSR[5:3](0x20)
- BIOZ_DAC_OSR[7:6](0x20)
- CLK_FREQ_SEL[5](0x1A)
- REF_CLK_SEL[6](0x1A)

The BioZ sample rate is calculated as follows.

- $\mathrm{SR}_{-} \mathrm{BIOZ}=\frac{\mathrm{PLL}}{\mathrm{NDIV} \text { CLK }}$
- BIOZ_ADC_CLK $=\frac{\text { PLL_CLK }}{\text { NDIV }}$ (must be between 16.0 kHz and 36.375 kHz)
- PLL_CLK = MxREF_CLK (must be between 14 MHz and 28 MHz)

REF_CLK is either 32.0 kHz or 32.768 kHz depending on the state of the CLK_FREQ_SEL and REF_CLK_SEL bits, and $\mathrm{M}=\mathrm{MDIV}+1$.
The BioZ stimulus frequency is set by the following equation.

- $\mathrm{F} _\mathrm{BIOZ}=\frac{\mathrm{PLL}=C L K}{\mathrm{KDIVxBIOZ} \text { DAC_OSR }}$
- BIOZ_SYNTH_CLK $=\frac{\text { PLL_CLK }}{\text { KDIV }}$ (must be between 4096 Hz and 28 MHz)

The ratio of $F_{-} B I O Z$ to $S_{R} B I O Z$ must be an integer, so that each BioZ sample is integrated over a given number of stimulus cycles. This ratio, $\overline{\mathrm{C}} \quad \mathrm{BIOZ}$, is calculated by the following equation.

- $\mathrm{C}_{-} \mathrm{BIOZ}=\frac{\mathrm{F}-\mathrm{BIOZ}}{\mathrm{SR} _\mathrm{BIOZ}}=\frac{\mathrm{NDIV} \times \mathrm{BIOZ} _A D C _O S R}{\mathrm{KDIV} \times \mathrm{BIOZ} _\mathrm{DAC} _\mathrm{OSR}}$

The procedure for setting the BioZ timing parameters is as follows:
First decide the target stimulus frequency (F_BIOZ) for the BioZ measurement.
If F_BIOZ < 54,668Hz:

1. Set BIOZ_DAC_OSR = 256 .
2. Set KDIV to get PLL_CLK in range.
3. Calculate MDIV + 1 = ROUND(PLL_CLK / REF_CLK).
4. Set NDIV to get BIOZ_ADC_CLK in range.
5. Set BIOZ _ADC_OSR so that C is an integer.
6. If F _ $\mathrm{BIOZ}=\mathrm{BIOZ}$ _ADC_CLK / 8, set BIOZ _ CH _FSEL $=1$, otherwise set to 0 .
7. If $\mathrm{F}_{-} \mathrm{BIOZ}=\mathrm{BIOZ}$ _ADC_CLK / 2, set BIOZ_INA_CHOP_EN $=0$, otherwise set to 1 .

If $\mathrm{F}_{-} \mathrm{BIOZ}>54,668 \mathrm{~Hz}$:

1. Set KDIV $=1$.
2. Set BIOZ_DAC_OSR to get PLL_CLK in range.
3. Calculate MDIV + 1 = ROUND(PLL_CLK / REF_CLK).
4. Set NDIV to get BIOZ_ADC_CLK in range.
5. Set BIOZ_ADC_OSR so that C is an integer.
6. Set BIOZ_CH_FSEL = 0 .
7. Set BIOZ_INA_CHOP_EN = 1 .

Examples are shown in Table 1 and Table 2
Table 1. Example Calculations of BioZ Configuration Parameters for F_BIOZ < 54688 Hz

STEP	APPLICATION	EX1	EX2	EX3	EX4	EX5
	EDA/GSR	X	X	X		
	BIA/BIS			X	X	X
	RESP					X
	ICG					
	CLK_REF	32,768	32,768	32,768	32,768	32,768
Target	F_BIOZ	8	100	1,000	10,000	40,000
Step 1	BIOZ_DAC_OSR[2:0]	256	256	256	256	256
Target	BIOZ_SYNTH_CLK	2,048	25,600	256,000	2,560,000	10,240,000
Step 2	KDIV[3:0]	8192	1024	64	8	2
Target	PLL_CLK	16,777,216	26,214,400	16,384,000	20,480,000	20,480,000
Step 3	MDIV[9:0] + 1	512	800	500	625	625
Step 4	NDIV[3:0]	1024	1024	512	1024	1024
Target	BIOZ_ADC_CLK	16,384	25,600	32,000	20,000	20,000
Step 5	BIOZ_ADC_OSR[2:0]	1024	512	128	128	128
	C	0.5	2	4	64	256
Actual	PLL_CLK	16,777,216	26,208,000	16,384,000	20,480,000	20,480,000
Actual	BIOZ_ADC_CLK	16,384	25,600	32,000	20,000	20,000
Actual	BIOZ_SYNTH_CLK	2,048	25,600	256,000	2,560,000	10,240,000
Actual	SR_BIOZ	16	50	250	156.25	156.25
Actual	F_BIOZ	8	100	1,000	10,000	40,000
Actual	Error	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%

Table 2. Example Calculations of BioZ Configuration Parameters for F_BIOZ > 54688 Hz

STEP	APPLICATION	EX1	EX2	EX3	EX4	EX5
	EDA/GSR					
	BIA/BIS	X	X	X	X	X

Table 2. Example Calculations of BioZ Configuration Parameters for F_BIOZ > 54688 Hz (continued)

STEP	APPLICATION	EX1	EX2	EX3	EX4	EX5
	RESP	X	X	X		
	ICG	X	X	X		
	CLK_REF	32,768	32,768	32,768	32,768	32,768
Target	F_BIOZ	54688	100000	150,000	250,000	500,000
Step 1	KDIV[3:0]	1	1	1	1	1
Target	BIOZ_DAC_OSR[2:0]	256	256	128	64	32
Step 2	BIOZ_SYNTH_CLK	1400128	25600000	19200000	1600000	16000000
Target	PLL_CLK	$14,000,128$	$25,600,000$	$19,200,000$	$16,000,000$	$16,000,000$
Step 3	MDIV[9:0] + 1	427	781	586	488	488
Step 4	NDIV[3:0]	512	1024	1024	512	512
Target	BIOZ_ADC_CLK	27,344	25,000	18,750	31,250	31,250
Step 5	BIOZ_ADC_OSR[2:0]	128	128	128	256	256
	C	427	512	1024	2048	4096
Actual	PLL_CLK	$13,991,936$	$25,591,808$	$19,202,048$	$15,990,784$	$15.990,784$
Actual	BIOZ_ADC_CLK	27,328	24,992	18,752	31,232	31,232
Actual	BIOZ_SYNTH_CLK	$13,991,936$	$25,591,808$	$19,202,048$	$15,990,784$	$15,990,784$
Actual	SR_BIOZ	213.5	195.25	146.5	122.0	122
Actual	F_BIOZ	54,656	99,968	150,016	249,856	499,712
Actual	Error	-0.06%	-0.03%	0.01%	-0.06%	-0.06%

Some common stimulus frequencies are shown in Table 3 for REF_CLK frequencies of 32.768 kHz . In the BioZ receive channel, the demodulation is done at the same frequency as the stimulus.
Table 3. Common BioZ Stimulus Frequencies and Sample Rates with REF_CLK = 32.768 kHz

$\begin{gathered} \text { REF_CLK } \\ (\mathrm{Hz}) \end{gathered}$	$\begin{aligned} & \text { M (MDIV } \\ & +1) \end{aligned}$	$\begin{gathered} \text { PLL_CLK } \\ (\mathrm{Hz}) \end{gathered}$	KDIV	$\begin{gathered} \text { BIOZ_(} \\ \text { DAC_OSR } \end{gathered}$	$\underset{(\mathrm{Hz})}{\mathrm{F}_{2} \mathrm{BIOZ}}$	NDIV	$\begin{aligned} & \mathrm{BIOZ} \\ & \text { ADC_OSR } \end{aligned}$	INTEGRATION CYCLES	$\begin{gathered} \text { SR_BIOZ } \\ \text { (sps) } \end{gathered}$
32768	790	25886720	1	32	808960	1024	128	4096	197.50
32768	706	23134208	1	32	722944	1024	128	4096	176.50
32768	634	20774912	1	32	649216	1024	128	4096	158.50
32768	568	18612224	1	32	581632	512	128	2048	284.00
32768	488	15990784	1	32	499712	512	128	2048	244.00
32768	458	15007744	1	32	468992	512	128	2048	229.00
32768	822	26935296	1	64	420864	1024	128	2048	205.50
32768	738	24182784	1	64	377856	1024	128	2048	184.50
32768	662	21692416	1	64	338944	1024	128	2048	165.50
32768	594	19464192	1	64	304128	1024	128	2048	148.50
32768	533	17465344	1	64	272896	512	128	1024	266.50
32768	488	15990784	1	64	249856	512	128	1024	244.00

Table 3. Common BioZ Stimulus Frequencies and Sample Rates with REF_CLK = 32.768 kHz (continued)

$\begin{gathered} \text { REF_CLK } \\ (\mathrm{Hz}) \end{gathered}$	$\begin{aligned} & \text { M (MDIV } \\ & +1) \end{aligned}$	$\begin{gathered} \text { PLL_CLK } \\ (\mathrm{Hz}) \end{gathered}$	KDIV	$\begin{gathered} \mathrm{BIOZ} \\ \text { DAC_OSR } \end{gathered}$	$\underset{(\mathrm{Hz})}{\mathrm{F}_{-} \mathrm{BIOZ}}$	NDIV	$\begin{gathered} \text { BIOZ } \\ \text { ADC_OSR } \end{gathered}$	INTEGRATION CYCLES	$\begin{gathered} \text { SR_BIOZ } \\ \text { (sps) } \end{gathered}$
32768	479	15695872	1	64	245248	512	128	1024	239.50
32768	430	14090240	1	64	220160	512	128	1024	215.00
32768	781	25591808	1	128	199936	1024	128	1024	195.25
32768	691	22642688	1	128	176896	1024	128	1024	172.75
32768	621	20348928	1	128	158976	1024	128	1024	155.25
32768	559	18317312	1	128	143104	512	128	512	279.50
32768	512	16777216	1	128	131072	512	128	512	256.00
32768	449	14712832	1	128	114944	512	128	512	224.50
32768	781	25591808	1	256	99968	1024	128	512	195.25
32768	727	23822336	1	256	93056	1024	128	512	181.75
32768	648	21233664	1	256	82944	1024	128	512	162.00
32768	641	21004288	1	256	82048	1024	128	512	160.25
32768	586	19202048	1	256	75008	1024	128	512	146.50
32768	523	17137664	1	256	66944	512	128	256	261.50
32768	469	15368192	1	256	60032	512	128	256	234.50
32768	844	27656192	2	256	54016	1024	128	256	211.00
32768	781	25591808	2	256	49984	1024	128	256	195.25
32768	672	22020096	2	256	43008	1024	128	256	168.00
32768	641	21004288	2	256	41024	1024	128	256	160.25
32768	609	19955712	2	256	38976	1024	256	512	76.13
32768	547	17924096	2	256	35008	512	256	256	136.75
32768	484	15859712	2	256	30976	512	256	256	121.00
32768	438	14352384	2	256	28032	512	256	256	109.50
32768	781	25591808	4	256	24992	1024	256	256	97.63
32768	719	23560192	4	256	23008	1024	256	256	89.88
32768	625	20480000	4	256	20000	1024	256	256	78.13
32768	563	18448384	4	256	18016	512	256	128	140.75
32768	500	16384000	4	256	16000	512	256	128	125.00
32768	469	15368192	4	256	15008	512	256	128	117.25
32768	438	14352384	4	256	14016	512	256	128	109.50
32768	813	26640384	8	256	13008	1024	256	128	101.63
32768	750	24576000	8	256	12000	1024	256	128	93.75
32768	688	22544384	8	256	11008	1024	256	128	86.00
32768	625	20480000	8	256	10000	1024	256	128	78.13
32768	563	18448384	8	256	9008	1024	256	128	70.38
32768	500	16384000	8	256	8000	512	256	64	125.00

Table 3. Common BioZ Stimulus Frequencies and Sample Rates with REF_CLK = 32.768 kHz (continued)

REF_CLK $\mathbf{(H z)}$	\mathbf{M} (MDIV $\mathbf{+ 1)}$	PLL_CLK $\mathbf{(H z)}$	KDIV	BIOZ_- DAC_O	F_BIOZ $\mathbf{(H z)}$	NDIV	BIOZ_- ADC_OSR	INTEGRATION CYCLES	SR_BIOZ $\mathbf{(s p s) ~}$
32768	438	14352384	8	256	7008	512	256	64	109.50
32768	750	24576000	16	256	6000	1024	256	64	93.75
32768	625	20480000	16	256	5000	1024	256	64	78.13
32768	500	16384000	16	256	4000	512	256	32	125.00
32768	500	16384000	32	256	2000	512	512	32	62.50
32768	500	16384000	64	256	1000	512	1024	32	31.25
32768	500	16384000	128	256	500	512	1024	16	31.25
32768	500	16384000	256	256	250	512	1024	8	31.25
32768	500	16384000	512	256	125	512	1024	4	31.25
32768	512	16777216	1024	256	64	512	1024	2	32
32768	512	16777216	2048	256	32	512	1024	1	32
32768	512	16777216	4096	256	16	1024	1024	1	16

FIFO Description

The FIFO holds a maximum of 256 samples, and supports BioZ samples of both phases and timing markers. Each sample in the FIFO is three bytes wide, and contains the tag and data. The tag embedded in the FIFO_DATA[23:20] is used to identify the source of each sample data. Table 4 shows the format of the FIFO data along with the associated tags.
Table 4. FIFO Data Format

DATA TYPE	TAG[3:0]				DATA[19:0]																			
BIT	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BioZ In Phase ADC Data	0	0	0	1	BIOZ_IN_PHASE[19:0]																			
BioZ Quadrature Phase ADC Data	0	0	1	0	BIOZ_QUAD_PHASE[19:0]																			
Marker	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
Invalid Data	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

BioZ Tags:

The BioZ In-Phase and Quad-Phase ADC Measurements have 4-bit tags and 20-bit sample data. Note that if the BioZ channel is disabled while a sample is being pushed to the FIFO, the FIFO contains an extra sample containing the value 0×004000, which should be ignored. This can be avoided by disabling the BioZ channel immediately after a FIFO_DATA_RDY or A_FULL interrupt.
Other Tags:
Markers are 24 bits long and can be used to insert a timing marker into the FIFO data stream. A marker is inserted by setting FIFO_MARK[5](0x0E), which is a self-clearing bit. An attempt to read an empty FIFO sample returns the INVALID_DATA tag.

BioZ

The BioZ system in [[BioZ System Block Diagram]] primarily consists of a transmit (TX) channel, a receive (RX) channel, and an input/output MUX. The BioZ system supports calibration using internal or external calibration resistors, enabling

MAX30009

Low-Power, High-Performance Bioimpedance Analog Front-End

0.1% accuracy in the I and Q channels. The flexible I/O MUX, lead-on and lead-off detection, adjustable amplifier bias, and lead bias allow for flexible hardware designs capable of multiple measurement types with low power consumption. The stimulus frequency and sample rate are determined by the timing subsystem (see the Timing Subsystem section).
The BioZ channel can measure impedances across multiple application areas with a wide range of frequencies and magnitudes, as shown in Figure 6. Each type of stimulus can operate over frequencies between 16 Hz and 806 kHz .

Figure 5. BioZ System Block Diagram

Figure 6. BioZ Typical Application Areas

BioZ Start-up and Shutdown

To power on the BioZ subsystem, set BIOZ_BG_EN[2](0x20) to 1 , which enables the bandgap reference, $\mathrm{V}_{\text {REF }}$. After a start-up time of approximately 200 ms , BioZ measurements can be initiated by selecting in-phase (I) in BIOZ_I_EN[0](0x20) and quadrature (Q) in BIOZ_Q_EN[1](0x20). BioZ data begins within 2 ms of enabling the measurement.
When the measurement is finished, the BioZ subsystem can be shut down by writing BIOZ_BG_EN, BIOZ_I_EN, and BIOZ_Q_EN to 0 . Alternatively, if another measurement is set to follow shortly after, setting BIOZ_DRV_MODE[1:0](0x22) to 0×3 can place the BioZ TX channel into standby mode, while BIOZ_BG_EN, BIOZ_I_EN, and BIOZ_Q_EN remain set to their active values. Standby mode disables the stimulus but maintains the DC bias of the drive electrodes, preventing any settling time associated with charging the electrode and body capacitance during the next measurement. In standby mode, the receive channel stops sampling and enters low-power mode unless BIOZ_STBYON[4](0x28) is set. Setting BIOZ_STBYON = 1 can further reduce settling time during the next measurement by maintaining the receive channel in an active state.

BioZ Transmit Channel

The MAX30009 can generate three types of stimuli: a sine-wave current, a sine-wave voltage, and an H -bridge voltage square wave. Each of these modes are described in the following sections. The stimulus generator can be put into a low-power standby mode by setting BIOZ_DRV_MODE[1:0](0x22) to 0×3. In this mode, the DDS circuit remains active, but the BIOZ_DRV_RESET switch is closed, driving DRVN to $\mathrm{V}_{\text {MID_TX. The }}$. Thmplifiers are put into a low-power state to reduce power consumption, and the H -bridge driver is disabled.

Sine-Wave Current Stimulus

To select the sine-wave current mode, set BIOZ_DRV_MODE[1:0](0x22) to 0×0. When generating a sine-wave current stimulus, the AC current is injected into the body using electrodes assigned to the DRVP and DRVN (drive) functions with the bioimpedance sensed differentially through the electrodes assigned to the BIP and BIN (bioimpedance receive) functions. Two-electrode and four-electrode configurations are supported for typical wet or dry electrode impedances. Figure 7 shows the stimulus signal path with a four-electrode configuration. A sine-wave current stimulus is generated by a Direct Digital Synthesis (DDS) circuit with the help of a 10-bit current DAC (I DAC). The VDRV amplifier converts this sine-wave current into a sine-wave voltage. One of four range resistors should be selected using

BIOZ_IDRV_RGE[3:2](0x22). The current range can alternatively be set with an external resistor by enabling BIOZ_EXT_RES[7](0x22). The sine-wave voltage appears on one side of this resistor and the other side is held at $V_{\text {MID }}$ TX by the operation of the $I_{\text {DRV }}$ amplifier, thus creating the sine-wave current stimulus in the $l_{\text {DRV }}$ amplifier feedback loop. This current flows through the range resistor, electrodes, and body impedance, then back into the IDRV amplifier output terminal.

A blocking capacitor ($\mathrm{C}_{E X T}$) connected between the DRVXC and DRVSJ pins is required to avoid the DC current from being driven through the body. A 47nF capacitor is recommended for all applications.
Both amplifiers in the signal chain have adjustable range and bandwidth to optimize power consumption for the required performance. BIOZ_AMP_RGE[3:2](0x25) sets the amplifier range, and BIOZ_AMP_BW[1:0](0x25) sets the gain-bandwidth product. When using the MAX30009 for Impedance Cardiography (ICG) and Bioimpedance Analysis (BIA), set the BIOZ_AMP_RGE and BIOZ_AMP_BW to higher values. It is generally acceptable to leave these settings at the lowest value for other applications.
When selecting a stimulus current magnitude, there are several restrictions to follow. The stimulus current is set by a combination of BIOZ_IDRV_RGE[3:2](0x22) and BIOZ_VDRV_MAG[5:4](0x22), and Table 5 shows the stimulus current options available for $\bar{M} A X 30009$.

1. To ensure patient safety, some current amplitude and frequency combinations are not allowed (see Table 5). If an off-limits setting is selected, the BIOZ_VDRV_MAG and BIOZ_IDRV_RGE fields are automatically overwritten to the highest allowed value based on the frequency settings. It is the responsibility of the end application device manufacturer to ensure the MAX30009 is programmed properly and in conformance with IEC60601-1 Medical electrical equipment - Part 1: General requirements for basic safety and essential performance with regards to patient auxiliary current limitations.
2. When using stimulus currents greater than $640 \mu A_{R M S}$, EL1 and EL4 must be used for DRVP and DRVN, respectively. Electrode pins EL2A, EL2B, EL3A, and EL3B are not designed to support currents above $640 \mu A_{\text {RMS }}$. Assigning the wrong pins does not damage the MAX30009, but switch resistance is higher and degrades measurement accuracy.
3. The current amplitude should be chosen to not exceed $1000 \mathrm{mV} \mathrm{V}_{\mathrm{P}-\mathrm{P}}$ at the BIP and BIN pins based on the network impedance at the current injection frequency.

Table 5. Stimulus Current Options

STEP	BIOZ_IDRV_RGE	RANGE RESISTOR	BIOZ_VDRV_MAG	RMS CURRENT	FREQUENCY RANGE (Hz)	RECOMMENDED BIOZ_AMP_RGE
1	$1(0 \times 0)$	$552.5 \mathrm{k} \Omega$	low (0×0)	16 nA	All frequencies	Low
2	$1(0 \times 0)$	$552.5 \mathrm{k} \Omega$	low mid (0×1)	32 nA	All frequencies	Low
3	$1(0 \times 0)$	$552.5 \mathrm{k} \Omega$	high mid (0×2)	80 nA	All frequencies	Low
4	$1(0 \times 0)$	$552.5 \mathrm{k} \Omega$	high (0×3)	160 nA	All frequencies	Medium-Low
5	$2(0 \times 1)$	$110.5 \mathrm{k} \Omega$	low (0×0)	320 nA	All frequencies	Medium-Low
6	$2(0 \times 1)$	$110.5 \mathrm{k} \Omega$	low mid (0×1)	640 nA	All frequencies	Medium-Low
7	$2(0 \times 1)$	$110.5 \mathrm{k} \Omega$	high mid (0×2)	$1.6 \mu \mathrm{~A}$	All frequencies	Medium-Low
8	$2(0 \times 1)$	$110.5 \mathrm{k} \Omega$	high (0×3)	$3.2 \mu \mathrm{~A}$	All frequencies	Medium-Low
9	$3(0 \times 2)$	$5.525 \mathrm{k} \Omega$	low (0×0)	$6.4 \mu \mathrm{~A}$	All frequencies	Medium-Low
10	$3(0 \times 2)$	$5.525 \mathrm{k} \Omega$	low mid (0×1)	$12.8 \mu \mathrm{~A}$	All frequencies	Medium-High
11	$3(0 \times 2)$	$5.525 \mathrm{k} \Omega$	high mid (0×2)	$32 \mu \mathrm{~A}$	All frequencies	Medium-High
12	$3(0 \times 2)$	$5.525 \mathrm{k} \Omega$	high (0×3)	$64 \mu \mathrm{~A}$	All frequencies	Medium-High
13	$4(0 \times 3)$	276.25Ω	low (0×0)	$128 \mu \mathrm{~A}$	≥ 512	High
14	$4(0 \times 3)$	276.25Ω	low mid (0×1)	$256 \mu \mathrm{~A}$	≥ 2048	High
15	$4(0 \times 3)$	276.25Ω	high mid (0×2)	$640 \mu \mathrm{~A}$	≥ 8192	High
16	$4(0 \times 3)$	276.25Ω	high (0×3)	1.28 mA	≥ 16384	High

Figure 7. Bioimpedance Stimulus Generator - Sine-Wave Current Mode

Sine-Wave Voltage Stimulus

To select the sine-wave voltage mode, set BIOZ_DRV_MODE[1:0](0x22) to 0×1. Figure 8 shows the stimulus signal path for a four-electrode configuration. The voltage output from the V ${ }_{\text {DRV }}$ amplifier, available on the DRVXR node, is applied directly to the EL1 electrode with a switch within the MAX30009 I/O MUX. In this mode of operation, a switch is closed around the $I_{\text {DRV }}$ amplifier so that the amplifier becomes a voltage follower and drives the EL4 node to $\mathrm{V}_{\text {MID_TX. }}$ In this mode, external resistors on the EL1 and EL4 nodes are used to limit the patient current to $\mathrm{V}_{\text {RMS }} /(2 \times \mathrm{R}$ SERIES $)$, where $V_{R M S}$ is the voltage output amplitude out of the V${ }_{\text {DRV }}$ amplifier set by BIOZ_VDRV_MAG[5:4](0x22). When using this voltage stimulus mode, EL1 must be selected for DRVP, and EL4 must be selected for DRVN. Electrode pins EL2A, EL2B, EL3A, and EL3B are not available for voltage mode stimulation.

Figure 8. Bioimpedance Stimulus Generator - Sine-Wave Voltage Mode

Square-Wave Voltage (H-Bridge) Stimulus

To select the H-bridge square-wave voltage stimulus mode, set BIOZ_DRV_MODE[1:0](0x22) to 0x2. Figure 9 shows the signal path for H -bridge mode. An H-bridge is used to alternately switch AVDD and then AGND onto EL1, and AGND and then AVDD onto EL4. In this case, the DDS circuit and IDRV amplifier are disabled, and the range resistor switches are all opened. When using this mode of operation, there must be series precision resistors in both the EL1 and EL4 paths to limit the current to $\mathrm{V}_{\text {AVDD }} /(2 \times$ RSERIES $)$. The current from the H-bridge flows through RSERIES EL1, a first electrode impedance, body impedance with its variable component, a second electrode impedance, and RSERIES_EL4. The applied patient current is set by selecting the appropriate RSERIES resistance value. The two RSERIES resistors and the body form an impedance divider, and the portion of the AC voltage signal across the body impedance is sensed by the bioimpedance AFE receive channel with the inputs selected from EL2A, EL2B, EL3A, and EL4B. DRVP must be assigned to EL1 and DRVN must be assigned to EL4.

Figure 9. Bioimpedance Stimulus Generator - H-Bridge Square-Wave Voltage Mode

BioZ Receive Channel

Figure 10 illustrates the BioZ receive channel block diagram. The channel comprises an input MUX, a bypassable and programmable analog high-pass filter, an instrumentation amplifier with programmable gain, two demodulators, two anti-alias filters, two programmable gain amplifiers, and two Analog-to-Digital Converters (ADCs). The input MUX includes several features such as Electrostatic Discharge (ESD) protection, Electromagnetic Interference (EMI) filtering, programmable electrode assignment switches, lead biasing, DC lead-off detection, and ultra-low power lead-on detection.
The MAX30009 BioZ receive channel Instrumentation Amplifier (INA) provides low-noise amplification of the differential signal, rejects differential DC voltage due to the analog high-pass filter, rejects common-mode interference such as AC mains interference, and provides high input impedance to guarantee high Common-Mode Rejection Ratio (CMRR) even in the presence of severe electrode impedance mismatch. The total channel gain can be set to $1 \mathrm{~V} / \mathrm{V}, 2 \mathrm{~V} / \mathrm{V}, 5 \mathrm{~V} / \mathrm{V}$, or $10 \mathrm{~V} / \mathrm{V}$, and is set by BIOZ_GAIN[1:0](0x24), which affects both the INA gain and PGA gain. The demodulators multiply the received signal by square waves with the same frequency ($\mathrm{F} _\mathrm{BIOZ} \mathrm{)} \mathrm{to} \mathrm{down-convert} \mathrm{the} \mathrm{measurement} \mathrm{frequency}$ to DC. The phase of the demodulator $f_{D E M O D}$ signal is 0° for the I channel and 90° for the Q channel. Following the PGA amplifiers are two-pole, active low-pass Anti-Aliasing Filters (AAFs) with a $600 \mathrm{~Hz}-3 \mathrm{~dB}$ frequency that provide approximately 57 dB of attenuation at half the sigma-delta ADC input sampling rate (BIOZ_ADC_CLK). After the AAFs are 20-bit sigma-delta ADCs. The effective bits of the ADC depend on the value of BIOZ_ADC_OSR[5:3](0x20) with higher oversampling ratios resulting in more effective bits (see the_Electrical Characteristics section).
When AC-coupling the BioZ receive channel or using the internal analog High-Pass Filter (HPF), the AC differential range is $>1000 \mathrm{mV} \mathrm{P}_{\mathrm{P}-\mathrm{P}}$ with an INA gain of $1 \mathrm{~V} / \mathrm{V}$. When DC-coupling the bioimpedance receive channel, the usable commonmode range of the bioimpedance receive channel is 0.5 V to $\mathrm{V}_{\mathrm{AVDD}}-0.75 \mathrm{~V}$. Internal lead biasing is used to achieve these requirements (see the BioZ Lead Bias section).

Figure 10. BioZ Receive Channel

BioZ Decimation and Digital Filters

The decimation filter is used along with the sigma-delta modulator within the ADC to reduce the sample rate of the BIOZ_ADC_CLK to a smaller programmable output rate (SR_BIOZ). The decimation filter has a SINC3 response with a corner frequency at approximately $0.26 \times$ SR_BIOZ. The decimation filter is followed by a programmable digital filter to implement High-Pass Filter (HPF) and Low-Pass Filter (LPF) selections.
The programmable digital high-pass filter scales with the ADC clock rate and can be set to either $0.00025 \times$ SR_BIOZ, $0.002 \times$ SR_BIOZ, or bypassed by setting BIOZ_DHPF[7:6](0x21). Similarly, the programmable digital low-pass filter scales with the ADC clock rate and can be set to $0.005 \times$ SR_BIOZ, $0.02 \times$ SR_BIOZ, $0.08 \times$ SR_BIOZ, $0.25 \times$ SR_BIOZ, or bypassed using BIOZ_LPF[5:3](0x21).

Converting Digitized BioZ Samples to Voltage and Impedance

BioZ channel samples are recorded in 20-bit left-justified 2's complement format. These samples represent the voltage at the ADC, which has passed through the INA, demodulator, PGA, and AAF. The INA and PGA apply a combined gain of $1 \mathrm{~V} / \mathrm{V}, 2 \mathrm{~V} / \mathrm{V}, 5 \mathrm{~V} / \mathrm{V}$, or $10 \mathrm{~V} / \mathrm{V}$ as set by BIOZ GAIN $[1: 0](0 \times 24)$. The demodulator multiplies the incoming sine-wave or square-wave by a square-wave with the same frequency as F_BIOZ. The AAF is a two-pole low-pass filter with a 600 Hz corner frequency. The decimation filter in the ADC has a bandwidth of approximately $0.26 \times$ SR_BIOZ.
When performing absolute impedance measurements for applications such as BIA/BIS and GSR/EDA, the DC component of the demodulated voltage represents the measured impedance. When F_BIOZ >> 600 Hz or when SR_BIOZ << F_BIOZ, the harmonics resulting from the square-wave demodulation can be ignored, and the digitized samples represent the DC component of the demodulated voltage. For sine-wave stimulation, the square-wave demodulation applies a scaling factor of $2 / \pi$ to the DC component, as shown in Figure 11.

The DC component of the demodulated voltage is converted by the ADC, and represents load impedance in currentstimulus mode according to the following equation.
Sine-Wave Stimulus: $Z_{B I O Z}(\Omega)=$ ADC_COUNT $\times V_{\text {REF_ECG }} /\left(2^{19} \times\right.$ BIOZ_GAIN $\left.\times 2 / \pi \times I_{M A G}\right)$
where,
ADC_COUNT = ADC counts in signed magnitude format
$V_{\text {REF_ECG }}=1 \mathrm{~V}$ (typ, see the Electrical Characteristics section)
BIOZ_GAIN $=$ Options $1 \mathrm{~V} / \mathrm{V}, 2 \mathrm{~V} / \mathrm{V}, 5 \mathrm{~V} / \mathrm{N}$, and $10 \mathrm{~V} / \mathrm{V}$.
$I_{M A G}=$ Stimulus current in APK set by BIOZ_VDRV_MAG[5:4](0x22) and BIOZ_IDRV_RGE[3:2](0x22).
The input-referred voltage amplitude can likewise be calculated with the following equations.
Sine-Wave Stimulus: $\mathrm{V}_{\mathrm{BIOZ}}\left(\mathrm{V}_{\mathrm{PK}}\right)=$ ADC_COUNT $\times \mathrm{V}_{\text {REF_ECG }} /\left(2^{19} \times\right.$ BIOZ_GAIN $\left.\times 2 / \pi\right)$
Square-Wave Stimulus: $\mathrm{V}_{\mathrm{BIOZ}}\left(\mathrm{V}_{\mathrm{PK}}\right)=$ ADC_COUNT $\times \mathrm{V}_{\text {REF_ECG }} /\left(2^{19} \times\right.$ BIOZ_GAIN $)$

Low-Power, High-Performance Bioimpedance Analog Front-End

For voltage stimulus modes, the impedance can be calculated from an impedance divider with the series resistors.
For respiration and ICG applications, the signal of interest is contained in the time-varying impedance signal. So, the DC component is not as important. The respiration signal band is typically 0.05 Hz to 4 Hz , and the ICG signal band is typically DC to 64 Hz . For these applications, the BioZ sample rate and digital filters can be adjusted to select the signal band of interest, considering the decimation filter $0 \times 26 \times$ SR_BIOZ bandwidth. The above impedance or voltage calculations can be performed for these applications, but these conversions are not strictly necessary.

Figure 11. Square-Wave Demodulation for a Sine-Wave Stimulus (INA and PGA Gain Not Shown)

BioZ Noise Measurements

Table 6 shows the input referred voltage noise of the BioZ receive channel measured with the inputs shorted and the frequency settings shown in Table 7 and BIOZ_AHPF[7:4] (0×24) $=5 \mathrm{kHz}$.
Table 6. BioZ Receive Channel Input-Referred Noise, 256sps

BIOZ_GAIN (V/V)	BIOZ_DLPF (Hz)	NOISE ($\mu \mathrm{V}_{\text {RMS }}$)	NOISE ($\mu \mathrm{V}_{\text {P-P }}$)	SNR (dB)	ENOB
1	bypass	16.89	75.28	86.4	14.1
	1.28	0.71	2.43	114.0	18.6
	5.12	1.40	9.71	108.0	17.7
	20.48	5.32	30.36	96.5	15.7
	64	15.53	65.57	87.1	14.2
2	bypass	8.40	40.68	92.5	15.1
	1.28	0.39	1.82	119.2	19.5
	5.12	0.74	4.86	113.6	18.6
	20.48	2.64	15.79	102.5	16.7
	64	7.72	33.39	93.2	15.2
5	bypass	3.32	15.06	92.6	15.1
	1.28	0.14	0.73	119.8	19.6
	5.12	0.33	2.19	112.6	18.4
	20.48	1.02	5.83	102.8	16.8
	64	3.09	13.36	93.2	15.2

> Low-Power, High-Performance Bioimpedance Analog Front-End

Table 6. BioZ Receive Channel Input-Referred Noise, 256sps (continued)

BIOZ_GAIN (V/V)	BIOZ_DLPF (Hz)	NOISE ($\mu \mathrm{V}_{\text {RMS }}$)	NOISE (μ V $\mathrm{P}_{\text {-P }}$)	SNR (dB)	ENOB
10	bypass	1.70	8.01	92.4	15.1
	1.28	0.09	0.49	118.2	19.3
	5.12	0.19	1.21	111.6	18.2
	20.48	0.53	3.28	102.5	16.7
	64	1.57	7.77	93.1	15.2

Note: $\mathrm{SNR}=20 \log \left(\frac{V_{\mathrm{IN}(\mathrm{RMS})}}{V_{N(\mathrm{RMS})}}\right)$, ENOB $=(\mathrm{SNR}-1.76) / 6.02$
Note: $\mathrm{V}_{I N(P-P)}=\left(2 \mathrm{~V}_{\mathrm{P}_{-P}} /\right.$ BIOZ_GAIN $)$ or $1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$, whichever is smaller. This represents the maximum signal of the receive channel: $V_{\operatorname{IN}(R M S)}=\frac{V_{\operatorname{IN}(P-P)}}{2 \sqrt{ } 2}$

Table 7. Input-Referred Noise Frequency Settings

REF_CLK $\mathbf{(H z)}$	\mathbf{M}	PLL_CLK $\mathbf{(H z)}$	BIOZ KDIV	BIOZ_DAC_OSR	F_BIOZ $\mathbf{(H z)}$	BIOZ NDIV	ADC_OSR	INTEGRATION $\mathbf{C Y C L E S}$	ADC_SR $\mathbf{(S p s)}$	BIOZ_AHPF $\mathbf{(k H z)}$
32768	512	$16,777,216$	2	128	65536	512	128	256	256	5

BioZ Input/Output MUX

The BioZ input/output MUX shown in Figure 12 has many helpful circuits to support BioZ applications. For the electrodes assigned to the receive channel, this circuitry contains integrated ESD and EMI protection, DC lead-off detect current sources, lead-biasing, programmable resistor loads, as well as a programmable HPF. The electrodes assigned to provide the stimulus have ESD protection and compliance monitors. The input/output MUX assigns physical electrodes to the available BioZ channel functions. For example, EL1 can be assigned to DRVP (positive drive), EL2B to BIP (positive input), EL3B to BIN (negative input), and EL4 to DRVN (negative drive). The EL2 and EL3 electrode inputs have A and B pins, allowing one board to support both GSR/EDA and BIA/BIS in the same application. In this case, the A inputs should be used for GSR/EDA and need external AC coupling capacitors, and the B inputs should be used for BIA/BIS and do not need external capacitors. The MUX also has four-wire calibration port (CAL1 to CAL4) for in-situ calibration to one or more precision external resistors with more details shown in Figure 17.

Figure 12. BioZ Input/Output MUX

BioZ EMI Filtering and ESD Protection

The EMI filter on the BIP and BIN internal inputs consists of $16 \mathrm{k} \Omega$ resistors connected to BIP and BIN, followed by a 1 pF differential-mode capacitor and 0.5 pF common-mode capacitors. These form a single-pole, low-pass, differentialand common-mode filter with the differential mode pole located at approximately 4 MHz and the common-mode pole located at approximately 20 MHz . Additional external EMI filters are not recommended for applications with dry electrodes to maintain high input impedance, which helps mitigate the impact of electrode impedance mismatch. With lower input impedance, the electrode impedance mismatch translates into increased conversion of common-mode voltage to differential-mode voltage. Applications with wet electrodes can use external EMI filters with high-precision components to minimize electrode impedance mismatch. In this case, the differential-mode pole can be set as low as the desired signal bandwidth, and the common-mode pole is set at least a decade below the AM radio band (535 kHz).
Pins EL1, EL2A,EL2B, CAL1, CAL2, CAL3, CAL4, EL3B, EL3A, and EL4 meet the following ESD standards:

- $\pm 8 \mathrm{kV}$ using the Contact Discharge method specified in IEC61000-4-2 ESD.
- $\pm 6 \mathrm{kV}$ using the Air-Gap Discharge method specified in IEC61000-4-2 ESD.

BioZ Lead Bias

The MAX30009 limits the BIP and BIN DC input range to 0.5 V to $\mathrm{V}_{\text {AVDD }}-0.75 \mathrm{~V}$. This range can be maintained either through external or internal lead biasing.
Internal DC lead biasing consists of $50 \mathrm{M} \Omega, 100 \mathrm{M} \Omega$, or $200 \mathrm{M} \Omega$ selectable resistors from BIP and BIN to $\mathrm{V}_{\text {MID_RX }}$ that
bias the MAX30009 to the proper potential relative to the body in battery-powered systems. By matching the voltage of $\mathrm{V}_{\text {MID }}$ RX to the body, lead bias ensures the common-mode input voltage of BIP and BIN are within the DC input range of the BioZ receive channel. Lead bias is only effective when the MAX30009 system has high galvanic isolation from earth ground. See BIOZ_RBIAS_VALUE[3:2](0x58) to select a resistance value, and EN_RBIAS_BIP[1](0x58) and EN_RBIAS_BIN[0](0x58) to enable lead bias.

Programmable BioZ Resistor Load

The programmable resistive load allows a built-in self-test of the current generator and BioZ receive channel. See Figure 13 for implementation details. For BIA/BIS applications, there is a selection of low-impedance loads to choose from: $280 \Omega, 600 \Omega, 900 \Omega$, and $5.1 \mathrm{k} \Omega$. For GSR/EDA applications, there is a selection of high-impedance loads to choose from: $25.7 \mathrm{k} \Omega, 101 \mathrm{k} \Omega, 505 \mathrm{k} \Omega$, and $1 \mathrm{M} \Omega$.
See register fields BMUX_RSEL[7:6](0x41), BMUX_BIST_EN[5](0x41), BMUX_GSR_RSEL[7:6](0x42), and GSR_LOAD_EN[5](0x42) to set the resistor value.
The BIA/BIA resistive loads can also be used as internal calibration resistors. See BIST_R_ERROR[7:0](0x44) for details.

Figure 13. Programmable Resistor Load

BioZ Lead-Off Detection

The MAX30009 has three techniques to determine if there is one or more electrode lead-off condition(s). Lead-off is a term to indicate that one or more electrodes used during the bioimpedance measurements has/have become open. In other words, the electrode-tissue interface impedance is too high and the bioimpedance measurement might become unreliable. These three lead-off techniques are DC lead-off, DRV lead-off, and programmable thresholds (AC lead-off) circuit. The relevant techniques depend on the electrode configuration (bipolar or tetrapolar) and which electrode is off. The first two techniques use circuits contained within the I/O MUX circuitry and the final technique is accomplished using digital circuitry after the receive channel ADC.
There is also an Ultra-Low-Power (ULP) lead-on detect circuit only to wake up the microcontroller controlling the MAX30009. This circuit should never be used while making bioimpedance measurements and should not be confused with the lead-off circuit functionality.
The DC lead-off detection circuit provides matched source and sink currents injected into the BIP and BIN electrodes. This current, when the electrodes are connected properly, flows through a first electrode-tissue interface, through the body, and then through a second electrode-tissue interface. This current flow develops a differential voltage across the two input pins. If one or both electrode-tissue interfaces have a poor connection with the body, then this current path has
much higher impedance and this voltage is large. If the electrodes are properly connected, then this voltage is small. The DC lead-off circuitry provides two sets of dual comparators to test if the differential voltage is too high.
This feature is enabled by EN_LOFF_DET[6](0x50), and the stimulus current magnitude (5 nA to 100 nA) is set by LOFF_IMAG[2:0](0x50). The current magnitude should be chosen to match the expected acceptable maximum impedance of the specific electrodes used in the application.
When using DC lead-off detection, the microcontroller and user can be alerted if the viability of the electrode tissue interface electrodes is compromised by dual comparators, indicating if BIP or BIN voltages exceed either a programmable high-limit or low-limit. The dual comparators can be used to generate a hardware interrupt if the DC lead-off voltage exceeds the threshold (i.e., a minimum continuous violation) for an interval exceeding either 115ms or 140ms, depending on the setting of FCLK before asserting one of the DC_LOFF interrupt flags. The comparator threshold is controlled by BIOZ_LOFF_THRESH[3:0](0x51). See Figure 14 for an example of the threshold and timing behavior.
For applications without external AC-coupling capacitors, the DC lead-off detection is applied directly to the BIP and BIN electrodes, as shown in Figure 15. However, when external AC-coupling capacitors are used, such as in GSR/EDA applications, DC lead-off detection must be applied externally. In this case, BIP and BIN must be assigned to EL2A and EL3A, and DC lead-off detection is applied externally through EL2B and EL3B. To enable this feature, EL2B and EL3B must be connected outside the AC-coupling capacitors, as shown in Figure 15, and EN_EXT_LOFF[5](0x50) must be enabled in addition to EN_LOFF_DET.
The DRV lead-off circuit checks the BioZ current stimulus path to determine if or not the DRVP and DRVN connections are in place when using a tetrapolar electrode configuration. In this case, one or both the DRVP and DRVN electrodes are compromised and are not reliably connected to the body. When the impedance between the DRVP and DRVN electrodes becomes too high, the magnitude of this amplifier output signal starts to approach one or both rails (AVDD or AGND), getting very close to amplifier saturation. When the DRV lead-off circuit is enabled, a sample-and-hold circuit followed by a dual-comparator samples the IDRV amplifier output signal and determines if it is outside 0.27 V and $V_{\text {AVDD }}$ - 0.35 V . If it is, the comparator trips and a DRV lead-off condition is flagged. To turn on the DRV lead-off circuit, set EN_DRV_OOR[4](0x50) to 1. An out-of-range condition must be exceeded for either 125 ms or 128 ms , depending on CLK_FREQ_SEL[5](0x1A), before the DRV_OOR status bit is asserted.
The BioZ threshold (AC lead-off) detection circuit monitors the output of the BioZ ADC with programmable high or low thresholds, and is enabled by EN_BIOZ_THRESH[0](0x21). The thresholds are set by BIOZ_LO_THRESH[7:0](0x26) and BIOZ _HI_THRESH[7:](0x27). If the digitized output remains over BIOZ_HI_THRESH or under BIOZ_LO_THRESH for longer than 128 ms , then the BIOZ _OVER[6] (0×01) or BIOZ UNDR[5](0x01) is asserted. This behavior is described graphically in Figure 16.
Table 8 shows the lead-off techniques suitable for each electrode configuration and lead-off condition. The internal HPF is suitable for stimulus frequencies above 1 kHz , and external capacitors are need for stimulus frequencies under 1 kHz .
Table 8. BioZ Lead-Off Cases

CONFIGURATION	CONDITION	DRVP	DRVN	BIP	BIN	MEASURED SIGNAL	LEAD-OFF TECHNIQUES
Bipolar, internal HPF	DRVP/BIP off	$\begin{aligned} & \text { DDS } \\ & \text { sine } \end{aligned}$	large signal	$\begin{aligned} & \text { DDS } \\ & \text { sine } \end{aligned}$	large signal	large	DC Lead-Off, DRVN Lead-Off, AC Lead-Off (Over)
Bipolar, internal HPF	DRVP/BIN off	$\begin{aligned} & \text { DDS } \\ & \text { sine } \end{aligned}$	large signal	$\begin{aligned} & \hline \text { DDS } \\ & \text { sine } \end{aligned}$	large signal	large	DC Lead-Off, DRVN Lead-Off, AC Lead-Off (Over)
Bipolar, external capacitors	DRVP/BIP off	$\begin{aligned} & \text { DDS } \\ & \text { sine } \end{aligned}$	large signal	$\begin{aligned} & \hline \text { DDS } \\ & \text { sine } \end{aligned}$	large signal	large	DRVN Lead-Off, AC Lead-Off (Over)
Bipolar, external capacitors	DRVN/BIN off	$\begin{aligned} & \hline \text { DDS } \\ & \text { sine } \end{aligned}$	large signal	$\begin{aligned} & \text { DDS } \\ & \text { sine } \end{aligned}$	large signal	large	DRVN Lead-Off, AC Lead-Off (Over)
Tetrapolar, internal HPF	DRVP off	$\begin{aligned} & \text { DDS } \\ & \text { sine } \end{aligned}$	large signal	large signal	large signal	indeterminant	DRVN Lead-Off
Tetrapolar, internal HPF	DRVN off	$\begin{aligned} & \text { DDS } \\ & \text { sine } \end{aligned}$	railed	railed	railed	railed	DRVN Lead-Off, AC Lead-Off (Over)
Tetrapolar, internal HPF	BIP off	V ${ }_{\text {MID_TX }}$	normal	$\mathrm{V}_{\text {MID_RX }}$	normal	1/2 of normal size	DC Lead-Off, AC Lead-Off (Under)

Table 8. BioZ Lead-Off Cases (continued)

CONFIGURATION	CONDITION	DRVP	DRVN	BIP	BIN	MEASURED SIGNAL	LEAD-OFF TECHNIQUES
Tetrapolar, internal HPF	BIN off	$\mathrm{V}_{\text {MID_TX }}$	normal	$V_{\text {MID_RX }}$	$\mathrm{V}_{\text {MID_RX }}$	near DC	DC Lead-Off, AC Lead-Off (Under)
Tetrapolar, internal HPF	BIP and BIN off	$\mathrm{V}_{\text {MID_TX }}$	normal	$\mathrm{V}_{\text {MID_RX }}$	$\mathrm{V}_{\text {MID_RX }}$	near DC	DC Lead-Off, AC Lead-Off (Under)
Tetrapolar, internal HPF	DRVP and BIP off	$\begin{aligned} & \text { DDS } \\ & \text { sine } \end{aligned}$	large signal	VMID_RX	large signal	large	DC Lead-Off, DRVN Lead-Off, AC Lead-Off (Over)
Tetrapolar, internal HPF	DRVP and BIN off	$\begin{aligned} & \text { DDS } \\ & \text { sine } \end{aligned}$	large signal	$\begin{aligned} & \text { DDS } \\ & \text { sine } \end{aligned}$	$\mathrm{V}_{\text {MID_RX }}$	DDS sine magnitude	DC Lead-Off, DRVN Lead-Off
Tetrapolar, internal HPF	DRVN and BIP off	$\begin{aligned} & \hline \text { DDS } \\ & \text { sine } \end{aligned}$	large signal	$\mathrm{V}_{\text {MID_RX }}$	large signal	large	DC Lead-Off, DRVN Lead-Off, AC Lead-Off (Over)
Tetrapolar, internal HPF	DRVN and BIN off	$\begin{aligned} & \text { DDS } \\ & \text { sine } \end{aligned}$	large signal	$\begin{array}{\|l\|} \hline \text { DDS } \\ \text { sine } \end{array}$	$\mathrm{V}_{\text {MID_RX }}$	DDS sine magnitude	DC Lead-Off, DRVN Lead-Off
Tetrapolar, external capacitors	DRVP off	$\begin{aligned} & \text { DDS } \\ & \text { sine } \end{aligned}$	large signal	large signal	$\begin{aligned} & \hline \text { DDS } \\ & \text { sine } \end{aligned}$	large	DRVN Lead-Off, AC Lead-Off (Over)
Tetrapolar, external capacitors	DRVN off	$\begin{aligned} & \hline \text { DDS } \\ & \text { sine } \end{aligned}$	large signal	large signal	large signal	indeterminant	AC Lead-Off (Over)
Tetrapolar, external capacitors	BIP off	$\mathrm{V}_{\text {MID_TX }}$	normal	$\mathrm{V}_{\text {MID_RX }}$	normal	DDS sine magnitude	DC Lead-Off
Tetrapolar, external capacitors	BIN off	$\mathrm{V}_{\text {MID_TX }}$	normal	normal	$\mathrm{V}_{\text {MID_RX }}$	DDS sine magnitude	DC Lead-Off
Tetrapolar, external capacitors	BIP and BIN off	$\mathrm{V}_{\text {MID_TX }}$	normal	$\mathrm{V}_{\text {MID_RX }}$	$\mathrm{V}_{\text {MID_RX }}$	near DC	DC Lead-Off, AC Lead-Off (Under)
Tetrapolar, external capacitors	DRVP and BIP off	$\begin{aligned} & \text { DDS } \\ & \text { sine } \end{aligned}$	large signal	$\mathrm{V}_{\text {MID_RX }}$	large signal	large	DC Lead-Off, DRVN Lead-Off, AC Lead-Off (Over)
Tetrapolar, external capacitors	DRVP and BIN off	$\begin{aligned} & \text { DDS } \\ & \text { sine } \end{aligned}$	large signal	large signal	$\mathrm{V}_{\text {MID_RX }}$	large	DC Lead-Off, DRVN Lead-Off, AC Lead-Off (Over)
Tetrapolar, external capacitors	DRVN and BIP off	$\begin{aligned} & \text { DDS } \\ & \text { sine } \end{aligned}$	large signal	$\mathrm{V}_{\text {MID_RX }}$	$\begin{aligned} & \hline \text { DDS } \\ & \text { sine } \end{aligned}$	DDS sine magnitude	DC Lead-Off
Tetrapolar, external capacitors	DRVN and BIN off	$\begin{aligned} & \text { DDS } \\ & \text { sine } \end{aligned}$	large signal	$\begin{aligned} & \text { DDS } \\ & \text { sine } \end{aligned}$	$\mathrm{V}_{\text {MID_RX }}$	DDS sine magnitude	DC Lead-Off

Figure 14. BioZ DC Lead-Off Behavior

Figure 15. BioZ DC Lead-Off Detection with Internal Sense

Figure 16. BioZ Threshold Behavior

BioZ Ultra-Low-Power (ULP) Lead-On Detection

The MAX30009 features an Ultra-Low-Power (ULP) lead-on detection circuit for the BioZ input electrodes. The BioZ channel must be disabled (BIOZ_I_EN[0] (0×20) and $\left.B I O Z _Q _E N[1](0 \times 20)=0\right)$ when ULP lead-on detection is enabled.
The ULP lead-on detect circuit operates by pulling BIN low with a pulldown resistance of $5 \mathrm{M} \Omega$ (typ) and pulling BIP high with a pullup resistance of $15 \mathrm{M} \Omega$ (typ). A low-power comparator determines if BIP is pulled below $0.75 \times$ AVDD (typ), and asserts the LON[7](0x01) status bit if BIP remains below the threshold for at least 128 ms . This circuit is shown in Figure 12. Because this circuit relies on DC current flowing through the electrodes, it does not work when external AC-coupling capacitors are used on the pins assigned to BIP and BIN.
There are several conditions that can pull BIP below the threshold and trigger a lead-on status:

- The total impedance between BIP and BIN is below $40 \mathrm{M} \Omega$ (typ) due to both electrodes contacting the body.
- The total impedance between BIP and AGND is below $45 \mathrm{M} \Omega$ (typ) due to the the BIP electrode contacting a body that is coupled to AGND. For example, if the MAX30009 system is coupled to earth ground through a power or data cable, and the body is also coupled to earth ground, then a low-impedance path can pull the BIP electrode low.
- The BIP electrode is contacting the body and has a large half-cell potential. The half-cell potential can push the BIP voltage below the threshold.
If the LON interrupt is enabled by LON_EN1[7](0x81), an interrupt is generated to alert the host microcontroller of the lead-on condition. This interrupt allows the microcontroller to sleep when the system is not in use, and only wake up when the device electrodes are touched. Upon receiving an interrupt and waking up, the microcontroller should read the LON status register to determine if a lead-on condition occurred. Because of the bit's clear-on-read behavior, read the status register a second time to determine if the lead-on condition persists.

BioZ Calibration

The MAX30009 can be calibrated, and can achieve impedance magnitude errors of 0.1% and impedance phase errors of 0.1°. The calibration can be performed at the factory by applying a precision resistor to the device electrodes, or onboard by connecting a precision resistor to the CALx pins. To achieve 0.1% accuracy, the calibration resistor(s) must have 0.05% tolerance, or be measured by an external reference with 0.05% accuracy. If using an on-board calibration, the reference resistor ($\mathrm{R}_{\mathrm{CAL}}$) should have a low temperature coefficient and should be connected to the calibration port, as shown in Figure 17. To connect the on-board RCAL, assert MUX_EN[1](0x41) and CAL_EN[0](0x41).
The calibration consists of measuring the I and Q offsets, and magnitude and phase coefficients at each measurement frequency, according to the following steps. Registers not mentioned in the following steps should be set to the values intended for use during measurement.

1. Set the synthesis frequency to the desired frequency.
2. Measure the I and Q offsets:
3. Set the stimulus current magnitude to the minimum $16 n A_{R M S}$ by setting BIOZ_VDRV_MAG[5:4](0x22) and BIOZ_IDRV_RGE[3:2](0x22) to 0×0.
4. Enable BIOZ_DRV_RESET[5](0x25) to apply a short circuit across the load.
5. Set BIOZ_I_EN[0](0x20) and BIOZ_Q_EN[1](0x20) to 1 to enable measurement.
6. Record data until the impedance $\overline{s i g n a l}$ is settled, and then record the average impedance in Ω (I_offset $[\Omega]$, Q_offset[$\Omega]$). Settling time varies with sample rate, filter selections, and other settings.
7. Note: I_offset and Q_offset should be calculated using the intended measurement current magnitude, not the minimum $16 n A_{R M S}$.
8. Measure the calibration resistor with both channels set to in-phase:
9. Set the stimulus current to the desired value by adjusting BIOZ_VDRV_MAG[5:4](0x22) and BIOZ_IDRV_RGE[3:2](0x22).
10. Disable BIOZ̄_DRV_RESET[5](0x25).
11. Set BIOZ_Q_CLK_PHASE[3](0x28) to 1, which shifts the Q-channel's demodulation clock to in-phase.
12. Set BIOZ _I_EN[0](0x20) and BIOZ_Q_EN[1](0x20) to 1 to enable measurement.
13. Record data until the impedance signal is settled, and then record the average impedance in Ω (I_rcal_in $[\Omega]$, Q_rcal_in [Ω]).
14. Measure the calibration resistor with both channels set to quadrature-phase:
15. Set BIOZ _Q_CLK_PHASE[3](0x28) to 0 .
16. Set BIOZ_{-1} CLK_PHASE[2](0x28) to 1, which shifts the l-channel's demodulation clock to quadrature phase.
17. Set BIOZ _I_EN[0] (0×20) and BIOZ _Q_EN[1] (0×20) to 1 to enable measurement.
18. Record data until the impedance signal is settled, and then record the average impedance in Ω (I_rcal_quad [Ω], Q_rcal_quad [Ω]).
19. Subtract the offsets from the resistor measurements:
20. I_cal_in $[\Omega]=$ I_rcal_in - I_offset
21. \bar{Q} _cal_in $[\Omega]=\bar{Q}$ _rcal_in - Q_offset
22. I_cal_quad $[\Omega]=$ I_rcal_quad - I_offset
23. Q_cal_quad $[\Omega]=$ Q_rcal_quad - Q_offset
24. Calculate the calibration magnitude and phase delay coefficients for each channel:

MAX30009

Low-Power, High-Performance Bioimpedance Analog Front-End

1. I_coef $=\sqrt{ }\left(I_{\text {_cal_in }}{ }^{2}+I _c a l _q u a d^{2}\right) / R_{C A L}$
2. \bar{Q} _coef $\left.=\sqrt{\left(Q _c a l _i n\right.}{ }^{2}+Q_{\text {_cal_quad }}{ }^{2}\right) / R C A L$
3. I_phase_coef $\left[{ }^{\circ}\right]=\arctan \left(\right.$ I_cal_quad $/$ I_cal_in) $\times 180^{\circ} / \pi$
4. Q_phase_coef $\left[{ }^{\circ}\right]=\arctan \left(-Q _c a l _q u a d /-Q _c a l _i n\right) \times 180^{\circ} / \pi$

To apply the calibration coefficients to a measured impedance, follow these steps.

1. Measure I and Q load impedances (I_load $[\Omega]$ and $Q _l o a d[\Omega]$).
2. Subtract the offsets from the load impedances:
3. I_load_offset $[\Omega]=$ I_load - I_offset
4. \bar{Q} _load_offset $[\Omega]=\bar{Q}$ _load - Q_offset
5. Apply I and Q coefficients to correct magnitude and phase delay of each channel:
6. I_cal_real [Ω] = (I_load_offset / I_coef) $x \operatorname{cos(I_ phase_ coef~} \times$ T / 180)
7. I_cal_imag $[\Omega]=\left(\right.$ I_load_offset / I_coef) $x \sin \left(I _p h a s e _c o e f \times \pi / 180\right)$
8. Q_cal_real $[\Omega]=\left(Q _l o a d _o f f s e t / Q _c o e f\right) x \sin \left(Q _p h a s e _c o e f x \pi / 180\right)$
9. Q_cal_imag $[\Omega]=\left(\bar{Q}\right.$ _load_offset $\left./ \bar{Q} _c o e f\right) \times \cos \left(\bar{Q} _\right.$phase_coef $\left.\times \pi / 180\right)$
10. Calculate the corrected load impedance:
11. Load_real $[\Omega]=$ I_cal_real - Q_cal_real
12. Load_imag $[\Omega]=\overline{\text { I }}$ cal_imag + Q_cal_imag
13. Load_mag $[\Omega]=\sqrt{\left(\text { Load_real }^{2}+\text { Load_imag }^{2}\right)}$
14. Load_angle $\left[{ }^{\circ}\right]=\arctan ($ Load_imag $/$ Load_real $) \times 180 / \pi$

Figure 17. Calibration Port Connections

Improving Accuracy of BIA/BIS Measurements

The parasitic capacitance on the pins assigned to DRVP and DRVN can be calibrated using the procedure described above. However, the parasitic capacitances on the pins assigned to BIP and BIN are more difficult to manage. The MAX30009 has two features to minimize the effect of these receive-channel parasitic capacitances.
First, it is important to realize that differences in BIP and BIN electrode tissue interface impedances working against these parasitic BIP and BIN capacitances can create phase accuracy issues. For instance, if the two PCB traces used to route BIP and BIN to the MAX30009 are carefully managed so that their parasitic capacitances are nearly equal, but the BIP electrode has a higher electrode tissue interface impedance than the BIN electrode. In such a case, the BIP side has more phase lag than the BIN side, creating a potential source of inaccuracy.
This problem can be mitigated with driven guard amplifiers, and BIP and BIN guard traces. The BIP and BIN-driven guard amplifiers can be enabled using EN_EXT_INLOAD[1](0x42). The outputs of the BIP and BIN guard amplifiers are offered at pins EL2A and EL3A, respectively. Guard traces remove the effect of the parasitic PCB capacitances by driving a guard signal, that moves at the same frequency, amplitude, and phase as the input signal of interest. These guard signal routes can be used to surround the BIP and BIN nets, usually parallel to the nets and on both sides. As there is no AC voltage drop across these parasitic capacitances, there are no associated AC currents needed to charge or discharge
them.
To help mitigate the effects of parasitic capacitances within the MAX30009 itself, assert the EN_INT_INLOAD[0](0x42), which enables an inverse capacitive load on each input.

Digital Interface

The MAX30009 supports I^{2} C interface and Serial Peripheral Interface (SPI). The CSB/I2C_SEL pin selects the interface being used at a time. When the I2C_SEL pin is high using an external pullup resistor, the interface is in the I2C mode and idles looking for a start condition on the SCL and SDA pins, while the SPI is held in a reset state. When the CSB/ I2C_SEL pin is low, the $1^{2} \mathrm{C}$ interface is disabled and SPI is activated. The following sections describe the timings and protocols for both interfaces.

Serial Peripheral Interface (SPI)

The SPI on the MAX30009 is SPI-/QSPI-/microwire-/DSP-compatible consisting of a Serial Data Input (SDI), Serial Data Output (SDO), Serial Clock Line (SCLK), and Chip Select (CSB). In SPI mode, the SDI/SDA pin operates as SDI and the SCLK/SCL pin operates as SCLK. The timing of the SPI is shown in Figure 18. Data is strobed on the SCLK rising edge while clocked out on the SCLK falling edge. All single-word SPI read and write operations are done in a 3-byte, 24-clock-cycle SPI instruction framed by a CSB low interval. The content of the SPI operation consists of a one-byte register address (A[7:0]) followed by a one-byte command word, which defines the transaction as write or read, followed by a single-byte data word either written to or read from the register location provided in the first byte.

Figure 18. Detailed SPI Timing Diagram

Single-Word SPI Register Read and Write Transactions

SPI write mode operations for MAX30009 are executed on the $24^{\text {th }}$ SCLK rising edge using the first three bytes of data available. In write mode, any data supplied after the 24th SCLK rising edge is ignored, as shown in Figure 19. Subsequent writes require CSB to deassert high and then assert low for the next write command. A rising CSB edge preceding the 24th rising edge of SCLK by $\mathrm{t}_{\mathrm{CSA}}$, as shown in Figure 18, results in the transaction being aborted.
Read mode operations access the requested data on the 16th SCLK rising edge, and present the MSB of the requested data on the following SCLK falling edge, allowing the microcontroller to latch the data MSB on the 17th SCLK rising edge, as shown in Figure 20. Configuration and status registers are available using normal-mode read-back sequences. FIFO reads must be done with a burst mode FIFO read (see the SPI Burst Mode Read Transaction section). In a normal read sequence, any SCLK rising edges after the 24th SCLK rising edge are ignored and if more than 24 SCLK rising edges are provided, the device reads back zeros.

Figure 19. SPI Write Transaction

Figure 20. SPI Read Transaction

SPI Burst-Mode Read Transaction

The MAX30009 has a FIFO burst-read mode to increase data transfer efficiency. The first 16 SCLK cycles operate exactly as described for the normal read mode, where the first byte is the register address and the second is the read command. The subsequent SCLKs consist of FIFO data, 24 SCLKs per word. All words in the FIFO should be read with a single FIFO burst-read command.
Each FIFO sample consists of three bytes per sample, and thus requires 24 SCLKs per sample to read out. The first byte (SCLK 17 to 24) consists of a tag indicating the data type of the subsequent bits as well as the MSBs of the data. The next two bytes (SCLK 24 to 40) consist of data. For example, Figure 21 shows a FIFO burst read consisting of three PPG samples in FIFO, labeled A through C, each with a 4-bit tag and 20-bit data. The number of words in the FIFO depends on the FIFO configuration. See the FIFO Description section for more details about the FIFO configuration and readout.

Figure 21. SPI FIFO Burst Mode Read Transaction

$\mathbf{I}^{2} \mathrm{C}$-/SMBus-Compatible Serial Interface

The $I^{2} \mathrm{C}$ interface on the MAX30009 is an $I^{2} \mathrm{C}$-/SMBus-compatible, two-wire serial interface consisting of an SDA and a SCL. In the $1^{2} \mathrm{C}$ mode, the SDI/SDA pin operates as SDA and the SCLK/SCL pin operates as SCL. These two pins are used for the communication between the MAX30009 and the master at clock rates up to 400 kHz . Figure 22 shows the two-wire interface timing diagram. The master generates SCL and initiates data transfer on the bus. The master device writes data to the MAX30009 by transmitting the proper slave address, followed by the register address, and then the data word. Each transmit sequence is framed by a START (S) or REPEATED START (Sr) condition, and a STOP (P) condition. Each word transmitted to the MAX30009 is 8 -bits long and is followed by an acknowledge clock pulse. A master reading data from the MAX30009 transmits the proper slave address, followed by a series of nine SCL pulses. The MAX30009 transmits data on SDA in sync with the master-generated SCL pulses. The master acknowledges receipt of each byte of data. Each read sequence is framed by a START (S) or REPEATED START (Sr) condition, a not acknowledge (NACK), and a STOP (P) condition. SDA operates as both an input and open-drain output. A pullup resistor is required on SDA. SCL operates only as an input. A pullup resistor is required on SCL if there are multiple masters on the bus, or if the single master has an open-drain SCL output. Series resistors in line with SDA and SCL are optional. Series resistors protect the digital inputs from high-voltage spikes on the bus lines, and minimize crosstalk and undershoot of the bus signals.

Low-Power, High-Performance Bioimpedance Analog Front-End

Figure 22. Detailed $I^{2} \mathrm{C}$ Timing Diagram

Bit Transfer

One data bit is transferred during each SCL cycle. The data on SDA must remain stable during the high period of the SCL pulse. Changes in SDA while SCL is high are control signals (see the START and STOP Conditions section).

START and STOP Conditions

SDA and SCL idle high when the bus is not in use. A master initiates communication by issuing a START condition, which indicates the beginning of a transmission to the MAX30009. A START condition is a high-to-low transition on SDA while SCL is high, as shown in Figure 23. The master terminates transmission, and frees the bus, by issuing a STOP condition. A STOP condition is a low-to-high transition on SDA while SCL is high, as shown in Figure 23. The bus remains active if a REPEATED START condition is generated instead of a STOP condition. A REPEATED START condition is the same as a START condition (high-to-low transition with SCL high), but it is sent after a START condition.
The MAX30009 recognizes a STOP condition at any point during data transmission except if the STOP condition occurs in the same high pulse as a START condition. For proper operation, do not send a STOP condition during the same SCL high pulse as the START condition.

Figure 23. $I^{2} C$ START, STOP, and REPEATED START Conditions

${ }^{12} \mathrm{C}$ Slave Address

In the $I^{2} \mathrm{C}$ mode, the SDO/ADDR pin acts as the device address selector pin. The ${ }^{2} \mathrm{C}$ slave address has two values, selected by SDO/ADDR when the I2C_SEL pin is pulled high. When ADDR is pulled low, either by a pulldown resistor or by the host controller, the slave address is $0 x D 0$ (write) and $0 x D 1$ (read), or $0 b 1101000+\mathrm{R} / \overline{\mathrm{W}}$. When ADDR is pulled high, the slave address is $0 \times D 2$ (write) and 0xD3 (read), or 0b1101001 + R/V.
Table 9. ${ }^{2}$ ² Addresses for MAX30009

ADDR PIN	WRITE ADDRESS	READ ADDRESS
Low	$0 \times D 0$	$0 x D 1$
High	$0 \times D 2$	$0 x D 3$

Acknowledge Bit

The acknowledge bit (ACK) is a clocked 9th bit that the MAX30009 uses to handshake-receipt each byte of data when in write mode, as shown in Figure 24. The MAX30009 pulls down SDA during the entire master-generated 9th clock pulse if the previous byte is successfully received. Monitoring ACK detects unsuccessful data transfers. An unsuccessful data transfer occurs if a receiving device is busy or if a system fault occurred. For an unsuccessful data transfer, the bus master retries communication. The master pulls down SDA during the 9th clock cycle to acknowledge the receipt of data when the MAX30009 is in the read mode. An acknowledge is sent by the master after each read byte to allow data transfer to continue. A not-acknowledge is sent when the master reads the final byte of data from the MAX30009, followed by a STOP condition.
SCL

Figure 24. I^{2} C Acknowledge Bit

${ }^{2}$ C Write Data Format

A write to the MAX30009 includes the transmission of a START condition, the slave address with the R/W bit set to 0 , one byte of data to configure the internal register-address pointer, one or more bytes of data, and a STOP condition. Figure 25 illustrates the proper frame format for writing one byte of data to the MAX30009. Figure 26 illustrates the frame format to write multiple bytes of data to the MAX30009.
The slave address with the R / \bar{W} bit set to 0 indicates the master intends to write data to the MAX30009. The device acknowledges receipt of the address byte during the master-generated 9th-SCL pulse.
The second byte transmitted from the master configures the internal register-address pointer of the MAX30009. The pointer tells the device where to write the next byte of data. An acknowledge pulse is sent by the MAX30009 upon receipt of the address-pointer data.
The third byte sent to the MAX30009 contains the data to be written to the pointed register. An acknowledge pulse from the MAX30009 signals receipt of the data byte. The address pointer auto-increments to the next register address after each received data byte. This auto-increment feature allows a master to write to sequential registers within one continuous frame. The master signals the end of transmission by issuing a STOP condition. The auto-increment feature is disabled when there is an attempt to write to the FIFO data register ($0 \times 0 \mathrm{C}$).

Figure 25. I^{2} C Single-Byte Write Transaction

Figure 26. I^{2} C Multibyte Write Transaction

${ }^{12}$ C Read Data Format

A read from the MAX30009 includes sending the slave address with the R/W bit set to 1 to initiate a read operation. The MAX30009 acknowledges receipt of the slave address by pulling SDA low during the 9th SCL clock pulse. A START command followed by a read command resets the address pointer to register 0x00.
The first byte transmitted from the MAX30009 is the content of register 0×00. Transmitted data is valid on the rising edge of SCL. The address pointer auto-increments after each read data byte. This auto-increment feature allows all registers to be read sequentially within one continuous frame. The auto-increment feature is disabled when there is an attempt to read from the FIFO Data register ($0 \times 0 \mathrm{C}$). A STOP condition can be issued after any number of read data bytes. If a STOP condition is issued followed by another read operation, the first data byte to be read is from register 0×00.
The address pointer can be preset to a specific register before a read command is issued. The master presets the address pointer by first sending the MAX30009 slave address with the R/W bit set to 0 , followed by the register address. A REPEATED START condition is then sent, followed by the slave address with the R/W bit set to 1 . The MAX30009 then transmits the content of the specified register. The address pointer auto-increments after transmitting the first byte.
The master acknowledges receipt of each read byte during the acknowledge clock pulse. The master must acknowledge all correctly received bytes except the last byte. The final byte must be followed by a not acknowledge from the master and then a STOP condition. Figure 27 illustrates the frame format for reading one byte from the MAX30009. Figure 28 illustrates the frame format for reading multiple bytes from the MAX30009.

Figure 27. I ${ }^{2}$ C Single-Byte Read Transaction

Figure 28. I^{2} C Multibyte Read Transaction

$\mathrm{I}^{2} \mathrm{C}$ Broadcast

The MAX30009 provides a feature of $\mathrm{I}^{2} \mathrm{C}$ broadcast write transactions to multiple devices simultaneously using the ${ }^{2} \mathrm{C}$ serial interface. The host microcontroller uses the address programmed in I2C_BCAST_ADDR[7:1](0x14) to send a write command to multiple devices and the slave devices respond with an ACK. To use the broadcast feature, I2C_BCAST_EN[0[(0x14) must be set to 1 .
This feature is especially useful for:

1. Synchronizing PLLs on multiple devices using the TIMING_SYS_RESET[7](0x10) bit; thereby, avoiding any external

MAX30009

Low-Power, High-Performance Bioimpedance Analog Front-End
connections.
2. Programming the same configuration to multiple devices at the same time.

Read transactions in broadcast mode are not supported. If a host sends out a read command using the $\mathrm{I}^{2} \mathrm{C}$ broadcast address, the device responds with a NACK.

Register Map

User Register Map

ADDRESS	NAME	MSB							LSB
Status									
0×00	Status 1[7:0]	A_FULL	-	$\begin{gathered} \text { FIFO_D } \\ \text { ATA_RD } \\ \bar{Y} \end{gathered}$	FREQ U NLOCK	$\begin{aligned} & \text { FREQ_L } \\ & \text { OCK } \end{aligned}$	PHASE- UNLOCK	PHASE LOCK	$\begin{gathered} \text { PWR_R } \\ \text { DY } \end{gathered}$
0×01	Status 2[7:0]	LON	$\begin{gathered} \text { BIOZ_O } \\ \text { VER } \end{gathered}$	$\begin{gathered} \text { BIOZ_U } \\ \text { NDR } \end{gathered}$	$\begin{gathered} \text { DRV_O } \\ \text { OR } \end{gathered}$	$\begin{gathered} \text { DC_LOF } \\ \text { F_PH } \end{gathered}$	$\begin{gathered} \text { DC_LOF } \\ \text { F_PL } \end{gathered}$	$\begin{gathered} \text { DC_LOF } \\ \text { F_NH } \end{gathered}$	$\begin{gathered} \text { DC_LOF } \\ \text { F_NL } \end{gathered}$
FIFO									
0×08	FIFO Write Pointer[7:0]	FIFO_WR_PTR[7:0]							
0×09	FIFO Read Pointer[7:0]	FIFO_RD_PTR[7:0]							
0x0A	FIFO Counter 1[7:0]	$\begin{gathered} \text { FIFO_D } \\ \text { ATA_CO } \\ \text { UNT}[8] \end{gathered}$	OVF_COUNTER[6:0]						
0x0B	FIFO Counter 2[7:0]	FIFO_DATA_COUNT[7:0]							
0x0C	FIFO Data Register[7:0]	FIFO_DATA[7:0]							
0x0D	FIFO Configuration $1[7: 0]$	FIFO_A_FULL[7:0]							
0x0E	$\begin{aligned} & \frac{\text { FIFO Configuration }}{\underline{2[7: 0]}} \end{aligned}$	-	-	$\begin{aligned} & \text { FIFO_M } \\ & \text { ARK } \end{aligned}$	$\begin{gathered} \text { FLUSH } \\ \text { FIFO } \end{gathered}$	$\begin{aligned} & \text { FIFO_ST } \\ & \text { AT_CLR } \end{aligned}$	A_FULL _TYPE	$\begin{gathered} \text { FIFO_R } \\ \mathrm{O}^{2} \end{gathered}$	-
System Control									
0×10	System Sync[7:0]	$\begin{gathered} \hline \text { TIMING } \\ \text { SYS_RE } \\ \text { SET } \end{gathered}$	-	-	-	-	-	-	-
0×11	System Configuration 1[7:0]	MASTER	$\begin{gathered} \hline \text { DISABL } \\ \text { E_I2C } \end{gathered}$	-	-	-	-	SHDN	RESET
0x12	Pin Functional Configuration[7:0]	-	-	-	-	INT_FCFG[1:0]		-	$\begin{gathered} \hline \text { TRIG_IC } \\ \text { FG } \end{gathered}$
0×13	Output Pin Configuration[7:0]	-	-	-	-	INT_OCFG[1:0]		TRIG_OCFG[1:0]	
0x14	I2C Broadcast Address[7:0]	I2C_BCAST_ADDR[6:0]							$\begin{gathered} \hline \text { I2C_BCA } \\ \text { ST_EN } \end{gathered}$
PLL									
0×17	PLL Configuration 1[7:0]	MDIV[9:8]		NDIV	KDIV[3:0]				PLL_EN
0×18	PLL Configuration 2[7:0]	MDIV[7:0]							
0x19	PLL Configuration 3[7:0]	-	-	-	-	-	-	-	$\begin{gathered} \hline \text { PLL_LO } \\ \text { CK_WN } \\ \text { DW } \end{gathered}$
0x1A	PLL Configuration 4[7:0]	-	$\begin{aligned} & \text { REF_CL } \\ & \text { K_SEL } \end{aligned}$	$\begin{aligned} & \text { CLK_FR } \\ & \text { EQ_SEL } \end{aligned}$		CLK	FINE_TUN	[4:0]	
BioZ Setup									
0x20	BioZ Configuration 1[7:0]	BIOZ_DA	OSR[1:	BIOZ	ADC_OSR	[2:0]	$\begin{gathered} \text { BIOZ_B } \\ \text { G_EN } \end{gathered}$	$\underset{_\mathrm{EN}}{\mathrm{BIOZ} Q}$	$\underset{\mathrm{EN}}{\mathrm{BIOZ}}$
0x21	$\begin{aligned} & \frac{\text { BioZ Configuration }}{\underline{2[7: 0]}} \end{aligned}$	BIOZ_D	PF[1:0]		Z_DLPF[2:		BIOZ_C	MP[1:0]	$\begin{gathered} \text { EN_BIO } \\ \text { Z_THRE }_{\text {SH }} \end{gathered}$

ADDRESS	NAME	MSB							LSB
0×22	BioZ Configuration $3[7: 0]$	$\begin{aligned} & \hline \text { BIOZ_E } \\ & \text { XT_RES } \end{aligned}$	LOFF_R APID	BIOZ_VDRV_MAG[1$: 0]$		$\begin{aligned} & \hline \text { BIOZ_IDRV_RGE[1: } \\ & 0] \end{aligned}$		$\begin{gathered} \hline \text { BIOZ_DRV_MODE[} \\ \text { 1:0] } \end{gathered}$	
0×23	BioZ Configuration $4[7: 0]$	-	-	-	-	-	-	$\begin{array}{\|c} \hline \text { BIOZ_FA } \\ \text { ST_MAN } \\ \text { UAL } \end{array}$	$\begin{aligned} & \text { BIOZ_FA } \\ & \text { ST_STA } \\ & \text { RT_EN } \end{aligned}$
0x24	$\frac{\text { BioZ Configuration }}{5[7: 0]}$	BIOZ_AHPF[3:0]				$\begin{aligned} & \text { BIOZ IN } \\ & \text { A_MOD } \\ & \hline \end{aligned}$	BIOZ D M_DIS	BIOZ_GAIN[1:0]	
0x25	$\begin{aligned} & \text { BioZ Configuration } \\ & \underline{6[7: 0]} \end{aligned}$	$\begin{aligned} & \mathrm{BIOZ} \mathrm{E} \\ & \text { XT_CAP } \end{aligned}$	$\begin{gathered} \hline \text { BIOZ_D } \\ \text { C_REST } \\ \text { ORE } \end{gathered}$	$\begin{gathered} \text { BIOZ_D } \\ \text { RV_RES } \\ \text { ET } \end{gathered}$	$\begin{gathered} \hline \mathrm{BIOZ} \mathrm{D} \\ \text { AC_RES } \\ \text { ET } \end{gathered}$	$\begin{gathered} \text { BIOZ_AMP_RGE[1: } \\ 0] \end{gathered}$		BIOZ_AMP_BW[1:0]	
0x26	BIOZ Low Threshold[7:0]	BIOZ_LO_THRESH[7:0]							
0x27	BIOZ High Threshold[7:0]	BIOZ_HI_THRESH[7:0]							
0x28	$\begin{aligned} & \text { BioZ Configuration } \\ & \underline{7[7: 0]} \end{aligned}$	-	-	-	$\begin{gathered} \text { BIOZ_ST } \\ \text { BYON } \end{gathered}$	$\begin{aligned} & \text { BIOZ_Q } \\ & \text { _CLK_P } \\ & \text { HASE } \end{aligned}$	BIOZ_I CLK $\overline{\text { P }}$ ASE	$\begin{array}{\|c} \text { BIOZ_IN } \\ \text { A_CHOP } \\ \text { EN } \end{array}$	$\begin{aligned} & \mathrm{BIOZ} C \\ & \mathrm{H} _\mathrm{FSEL} \end{aligned}$
BioZ Calibration									
0x41	BioZ Mux Configuration 1[7:0]	BMUX_RSEL[1:0]		$\begin{aligned} & \text { BMUX_B } \\ & \text { IST_EN } \end{aligned}$	-	-	CONNE CT_CAL _ONLY	MUX_EN	CAL_EN
0x42	$\begin{aligned} & \text { BioZ Mux Configuration } \\ & \underline{2[7: 0]} \end{aligned}$	$\begin{gathered} \text { BMUX_GSR_RSEL[} \\ 1: 0] \end{gathered}$		$\begin{aligned} & \text { GSR_LO } \\ & \text { AD_EN } \end{aligned}$	-	-	-	$\begin{gathered} \text { EN_EXT } \\ \text { _INLOA } \\ D \end{gathered}$	$\begin{aligned} & \text { EN_INT_- } \\ & \text { INLOAD } \end{aligned}$
0x43	BioZ Mux Configuration 3[7:0]	BIP_ASSIGN[1:0]		BIN_ASSIGN[1:0]		DRVP_ASSIGN[1:0]		DRVN_ASSIGN[1:0]	
0x44	$\begin{aligned} & \text { BioZ Mux Configuration } \\ & 4[7: 0] \end{aligned}$	BIST_R_ERR[7:0]							
DC Leads Setup									
0×50	DC Leads Configuration[7:0]	$\begin{gathered} \text { EN_LON } \\ \text { _DET } \end{gathered}$	EN LOF F_DET	$\begin{gathered} \text { EN_EXT } \\ \text { _LOFF } \end{gathered}$	$\begin{gathered} \text { EN_DRV } \\ \text { _OOR } \\ \hline \end{gathered}$	$\begin{gathered} \text { LOFF_IP } \\ \mathrm{OL}^{-} \end{gathered}$	LOFF_IMAG[2:0]		
0×51	DC Lead Detect Threshold[7:0]	-	-	-	-	LOFF_THRESH[3:0]			
Lead Bias									
0x58	Lead Bias Configuration 1[7:0]	-	-	-	-	RBIAS_VALUE[1:0]		$\begin{aligned} & \hline \text { EN_RBI } \\ & \text { AS_BIP } \end{aligned}$	$\begin{aligned} & \hline \text { EN_RBI } \\ & \text { AS_BIN } \end{aligned}$
Interrupt Enables									
0x80	Interrupt Enable 1[7:0]	$\begin{gathered} \text { A_FULL } \\ \text { _EN } \end{gathered}$	-	$\begin{gathered} \text { FIFO_D } \\ \text { ATA_RD } \\ \text { Y_EN } \end{gathered}$	$\begin{gathered} \text { FREQ_U } \\ \text { NLOCK } \\ \text { EN } \end{gathered}$	$\begin{aligned} & \text { FREQ_L } \\ & \text { OCK_EN } \end{aligned}$	PHASE UNLOCK EN	$\begin{aligned} & \text { PHASE_ } \\ & \text { LOCK_E } \\ & \mathrm{N} \\ & \hline \end{aligned}$	-
0×81	Interrupt Enable 2[7:0]	LON_EN	$\begin{aligned} & \text { BIOZ_O } \\ & \text { VER_EN } \end{aligned}$	$\begin{aligned} & \text { BIOZ_U } \\ & \text { NDR_EN } \end{aligned}$	$\begin{aligned} & \text { DRV_O } \\ & \text { OR_EN } \end{aligned}$	$\begin{gathered} \text { DC_LOF } \\ \text { F_PH_E }_{\mathrm{N}} \mathrm{~N} \end{gathered}$	$\begin{gathered} \text { DC_LOF } \\ \text { F_PL_E }_{-1}{ }^{2} \end{gathered}$	$\begin{aligned} & \text { DC_LOF } \\ & \text { F_NH_E }_{-} \\ & \mathrm{N}^{2} \end{aligned}$	$\begin{gathered} \text { DC_LOF } \\ \mathrm{F}_{-1} \mathrm{NL} \text { _E } \\ \mathrm{N}^{-} \end{gathered}$
Part ID									
0xFF	Part ID[7:0]	PART_ID[7:0]							

Low-Power, High-Performance Bioimpedance Analog Front-End

Register Details

Status 1 (0×00)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	A_FULL	-	FIFO_DATA _RDY	FREQ_UNL OCK	FREQ_LOC K	PHASE_UN LOCK	PHASE_LO CK	PWR_RDY
Reset	0	-	0	0	0 Ob0	0	0	1
Access Type	Read Only	-	Read Only					

A FULL

A_FULL is set to 1 when the FIFO reaches the threshold programmed in the FIFO_A_FULL[7:0](0x0D). This is a readonly bit and is cleared when the Status 1 Register is read. It is also cleared when the FIFO Data Register(0x0C) is read if FIFO_STAT_CLR[3](0x0E) $=1$.

A_FULL	DECODE
0	Normal operation
1	Indicates the FIFO buffer reached the threshold set by FIFO_A_FULL[7:0](0x0D).

FIFO_DATA_RDY

FIFO_DATA_RDY bit is set to 1 when new data is available in the FIFO. This is a read-only bit and is cleared by reading the Status 1 register. It is also cleared by reading the FIFO Data Register(0x0C) if FIFO_STAT_CLR[3](0x0E) = 1.

FIFO_DATA_RDY	DECODE
0	Normal operation
1	New data is available in the FIFO

FREQ_UNLOCK

FREQ_UNLOCK is set to 1 when the PLL loses the frequency lock. This is a read-only bit and is cleared by reading the Status 1 register. If the frequency unlock state persists, the FREQ_UNLOCK bit is set again.

FREQ_UNLOCK	
0	The PLL is frequency locked.
1	The PLL is frequency unlocked.

FREQ_LOCK

FREQ_LOCK bit is set to 1 when the PLL frequency gets locked. This is a read-only bit and is cleared by reading the Status 1 register. If the PLL remains locked, the FREQ_LOCK bit continues to be asserted.

PHASE_UNLOCK

PHASE_UNLOCK is set to 1 when the PLL phase is locked and then loses its phase lock. This is a read-only bit and cleared by reading the Status 1 register. If the PLL remains phase unlocked, the PHASE_UNLOCK bit is set again.

PHASE_UNLOCK	DECODE
0	The PLL is phase locked.
1	The PLL is phase unlocked.

PHASE_LOCK

PHASE_LOCK is set to 1 when the PLL achieves phase lock. This is a read-only bit and cleared by reading the Status 1
register. If the PLL remains in phase lock, the PHASE_LOCK bit is set again.

PHASE_LOCK	
0	The PLL is phase unlocked.
1	The PLL is phase locked.

PWR_RDY

PWR_RDY is set to 1 when VDVDD goes below the Undervoltage Lockout (UVLO) threshold, which is nominally 1.3 V . If this condition occurs, all registers are reset to their POR state. This bit is not triggered by a soft-reset. This is a readonly bit and is cleared when Status 1 register is read, or by setting SHDN[1](0x11) bit to 1.
PWR_RDY is a non-maskable interrupt, so it gets asserted on INT.

Value	Decode
0	Normal operation
1	Indicates that $V_{\text {DVDD }}$ goes below the UVLO threshold.

Status 2 (0×01)

BIT	7	6	5	4	3	2	1	0
Field	LON	$\mathrm{BIOZ}_{\overline{\mathrm{R}}}$	$\mathrm{BIOZ}_{\overline{\mathrm{R}}} \mathrm{UND}$	DRV_OOR	$\underset{\text { PH }}{\substack{\text { DC_LOFF_ }}}$	$\begin{gathered} \hline \text { DC_LOFF_ } \\ \text { PL } \end{gathered}$	$\begin{gathered} \text { DC_LOFF_ } \\ \mathrm{NH}_{-} \end{gathered}$	$\begin{gathered} \text { DC_LOFF_ } \\ \text { NL } \end{gathered}$
Reset	0	0	0	0	0	0	0	0
Access Type	Read Only							

LON

LON is set to 1 when a BioZ lead-on condition is detected. This is a read-only bit and is cleared by reading the Status 2 register. If the
BioZ lead-on condition persists, the LON bit is set again.
For the LON status bit to work when PLL is not enabled, set REF_CLK_SEL to 0 to enable the on-chip oscillator.

LON	
0	BioZ lead-on condition is not detected.
1	BioZ lead-on condition is detected.

BIOZ_OVER

BIOZ_OVER is set to 1 when the absolute value of the BioZ ADC reading exceeds the BioZ high threshold set by register BIOZ HI_THRESH[7:0](0x27) for more than 128 ms if CLK_FREQ_SEL $=0$, or 125 ms if CLK_FREQ_SEL $=1$. This bit is cleared when the Status 2 register is read. If the BIOZ_OVER condition persists at the end of next \bar{B} ioZ sample, the bit is set to 1 again.
This status bit is recommended for use in two-electrode and four-electrode BioZ Lead-Off detection.

BIOZ_OVER	
0	Normal operation
1	BIOZ_HI_THRESH is exceeded.

BIOZ_UNDR

BIOZ_UNDR is set to 1 when the absolute value of the BioZ ADC reading is below the BIOZ Low Threshold set by register BIOZ_LO_THRESH[7:0](0x26) for more than 128ms if CLK_FREQ_SEL = 0, or 125ms if CLK_FREQ_SEL $=1$. This bit is cleared when the Status 2 register is read. If the BIOZ_UNDR condition persists at the end of the next BioZ

Low-Power, High-Performance Bioimpedance Analog Front-End

sample, the bit is set to 1 again.
This status bit is recommended for use in four-electrode BioZ Lead-Off detection.

BIOZ_UNDER	
0	Normal operation
1	BIOZ_LO_THRESH is exceeded.

DRV_OOR

DRV_OOR is set to 1 when the BioZ DRVN voltage peaks are out of range ($<0.2 \mathrm{~V}$ or $>\left(\mathrm{V}_{\text {AVDD }}-0.2 \mathrm{~V}\right)$) for more than 128 ms if CLK_FREQ_SEL $=0$, or 125 ms if CLK_FREQ_SEL $=1$.
This bit is cleared when the Status 2 register is read. If the BioZ drive out-of-range condition persists, this bit continues to remain asserted.

DRV_OOR	DECODE
0	Normal operation
1	DRVN is out of range.

DC_LOFF_PH

DC_LOFF_PH is set to 1 when the BIP voltage is greater than $\mathrm{V}_{\mathrm{BIOZ}} \mathrm{TH}_{-} \mathrm{H}$ for more than 128 ms if CLK_FREQ_SEL = 0 , or 125 ms if CLK_FREQ_SEL $=1$.
$\mathrm{V}_{\mathrm{BIOZ}}^{-}$TH_H ${ }^{\text {is }}$ is set by LOFF_THRESH[3:0](0x51).
This is a read-only bit and it is cleared by reading the Status 2 register. If the lead-off condition for DC_LOFF_PH persists, this bit is set again.

DC_LOFF_PH	
0	Normal operation
1	The BIP voltage is greater than $\mathrm{V}_{\text {BIOZ_TH_H }}$.

DC_LOFF_PL

DC_LOFF_PL is set to 1 when the BIP voltage is less than $V_{B I O Z}$ TH_L for more than 128 ms if CLK_FREQ_SEL $=0$, or125ms if CLK_FREQ_SEL $=1$.
$\mathrm{V}_{\mathrm{BIOZ}} \mathrm{TH}_{\mathrm{L}} \mathrm{L}$ is set by LOFF_THRESH[3:0](0x51).
This is a read-only bit and it is cleared by reading the Status 2 register. If the lead-off condition for DC_LOFF_PL persists, this bit is set again.

DC_LOFF_PL	DECODE
0	Normal operation
1	The BIP voltage is lower than $\mathrm{V}_{\text {BIOZ_TH_L. }}$

DC_LOFF_NH

DC_LOFF_NH is set to 1 when the BIN voltage is greater than $\mathrm{V}_{\mathrm{BIO}} \mathrm{Z}_{-} \mathrm{TH}_{\mathbf{H}}$ H for more than 128 ms if CLK_FREQ_SEL = 0 , or 125 ms if CLK_FREQ_SEL $=1$.
$\mathrm{V}_{\mathrm{BIOZ}}^{-}$TH_H H is set by LOFF_THRESH[3:0](0x51).
This is a read-only bit and it is cleared by reading the Status 2 register. If the lead-off condition for DC_LOFF_NH persists, this bit is set again.

DC_LOFF_NH	DECODE
0	Normal operation
1	The BIN voltage is higher than $\mathrm{V}_{\mathrm{BIOZ}_{-} \text {TH_H }}$.

DC_LOFF_NL

 or $\overline{125 m s}$ if CLK_FREQ_SEL $=1$.
$\mathrm{V}_{\mathrm{BIOZ}}^{2} \mathrm{TH} _\mathrm{L}$ is set by LOFF_THRESH[3:0](0x51).
This is a read-only bit and it is cleared by reading the Status 2 register. If the lead-off condition for DC_LOFF_NL persists, this bit is set again.

DC_LOFF_NL	
0	Normal operation
1	The BIN voltage is lower than V $_{\text {BIOZ_TH_L. }}$

FIFO Write Pointer (0x08)

BIT	7	6	5	4	3	2	1	0
Field	FIFO_WR_PTR[7:0]							
Reset	0x00							
Access Type	Read Only							

FIFO_WR_PTR

FIFO_WR_PTR points to the FIFO location where the next sample is written. This pointer advances for each sample pushed on to the circular FIFO. The write pointer wraps around to count 0×00 as the next FIFO location after count 0xFF.

FIFO Read Pointer (0x09)

BIT	7	6	5	4	3	2	1	0
Field	FIFO_RD_PTR[7:0]							
Reset	0x00							
Access Type	Write, Read, Dual							

FIFO_RD_PTR

FIFO_RD_PTR points to the FIFO location from which the next sample is to be read through the serial interface. This pointer advances each time a sample is read from the circular FIFO. If the PLL is enabled, the read pointer can also be written to. This allows rereading (or retrying) samples from the FIFO. However, writing to FIFO_RD_PTR can have adverse effects if it results in the FIFO being almost full. The read pointer wraps around to count $0 x 00$ after count $0 x F F$.
If the PLL is disabled, writing to FIFO_RD_PTR register is not allowed.
FIFO Counter 1 ($0 \times 0 \mathrm{~A}$)

BIT	7	6	5	4	3	2	1	0
Field	FIFO DATA COŪNT[8]	OVF_COUNTER[6:0]						
Reset	0	0×00						
Access Type	Read Only	Read Only						

FIFO_DATA_COUNT

FIFO_DATA_COUNT[8](0x0A) is a read-only bit that holds the most significant bit of the number of items available in the FIFO for the host to read. The lower 8 bits are in the FIFO_DATA_COUNT[7:0](0x0B) register.
FIFO_DATA_COUNT[8:0] increments when a new item is pushed to the FIFO, and decrements when the host reads an item from the FIFO.
FIFO_DATA_COUNT[8:0] is useful for debug.

OVF_COUNTER

The overflow counter OVF_COUNTER logs the number of samples lost if the FIFO is not read in a timely fashion. When the FIFO is full, any new sample results in either new or old sample getting lost depending on the FIFO_RO[1](0x0E) setting.
This is a read-only register. When a complete sample is read from FIFO and the read pointer advances, the OVF_COUNTER is reset to zero. It should be read immediately before reading the FIFO to check if an overflow condition occurred. This counter saturates at count value $0 \times 7 \mathrm{~F}$.

FIFO Counter 2 ($0 \times 0 B$)

BIT	7	6	5	4	3	2	1	0
Field	FIFO_DATA_COUNT[7:0]							
Reset	0x00							
Access Type	Read Only							

FIFO_DATA_COUNT

FIFO_DATA_COUNT[7:0] is a read-only register that holds the lower 8 bits of the number of items available in the FIFO for the host to read.
See the FIFO_DATA_COUNT[8](0x0A) description for details.

FIFO Data Register (0x0C)

BIT	7	6	5	4	3	2	1	0
Field	FIFO_DATA[7:0]							
Reset	0xFF							
Access Type	Read Only							

FIFO_DATA

FIFO_DATA is used to get data from the FIFO using burst reads only. When burst reading from this register, the register address pointer does not auto-increment, and the FIFO_RD_PTR[7:0](0x09) advances to provide subsequent samples. Each sample is three bytes. So, burst reading three bytes in the FIFO_DATA register through the serial interface advances the FIFO_RD_PTR by one count. The format and data type of the data stored in the FIFO is determined by the tag associated with the data. For details and examples of various data types in some use cases, see the FIFO Description section. This is a read-only register.

FIFO Configuration 1 ($0 \times 0 \mathrm{D}$)

BIT	7	6	5	4	3	2	1	0
Field	FIFO_A_FULL[7:0]							
Reset	0x7F							
Access Type	Write, Read							

FIFO_A_FULL

FIFO_A_FULL sets the high-water mark for the FIFO and determines when status bit A_FULL[7](0x00) is asserted. The A_FULL bit is asserted when the FIFO holds (256 - FIFO_A_FULL) samples. For example, if set to $0 \times 0 \mathrm{~F}, \mathrm{~A}$ _FULL is asserted when there are 15 empty spaces left (241 samples in FIFO). If A_FULL_EN[7](0x80), then A_FULL being asserted results in an interrupt on the INT pin. This condition should prompt the processor to read samples from the FIFO before it fills and overflows. The A_FULL bit is cleared and the interrupt is deasserted when the Status 1 register (0×00) is read.

FIFO_A_FULL	Free Spaces Before Interrupt is Asserted	Number of Samples in FIFO
0×00	0	256
0×01	1	255
0×02	2	254
0×03	3	253
---	---	----
$0 \times F E$	254	2
$0 \times F F$	255	1

FIFO Configuration 2 (0×0 E)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	-	-	FIFO_MAR $_{\text {K }}$	FLUSH_FIF O	FIFO_STAT CLR	A_FULL_TY PE	FIFO_RO	-
Reset	-	-	0	0	1	0	1	-
Access Type	-	-	Write, Read	-				

FIFO_MARK

When the FIFO_MARK is set to 1 , a marker tag is pushed to the FIFO. FIFO_MARK is a self-clearing bit. The marker tag is useful for differentiating the data in the FIFO before and after the tag.
See the FIFO Description section for the marker tag information.

FLUSH_FIFO

When the FLUSH_FIFO bit is set to 1 , the FIFO is flushed, and FIFO_WR_PTR[7:0](0x08), FIFO_RD_PTR[7:0](0x09), FIFO_DATA_COUNT[8:0](0x0A, 0x0B), and OVF_COUNTER[6:0](0x0A) are reset to zero. The contents of the FIFO are lost. FLUSH_FIFO is a self-clearing bit.

FIFO_STAT_CLR

FIFO_STAT_CLR determines if a FIFO_DATA[7:0](0x0C) register read clears the status bits A_FULL[7](0x00) and FIFO_DATA_RDY[5](0x00), and their corresponding interrupts.

Low-Power, High-Performance Bioimpedance Analog Front-End

FIFO_STAT_CLR	DECODE
0	A_FULL and FIFO_DATA_RDY status and interrupts do not get cleared by a FIFO_DATA[7:0](0x0C) register read. They get cleared by a Status 1 register read.
1	A_FULL and FIFO_DATA_RDY status and interrupts get cleared by a FIFO_DATA[7:0](0x0C) register read or aStatus 1 register read.

A_FULL_TYPE

A_FULL_TYPE defines the behavior of status bit A_FULL[7](0x00) and its corresponding interrupt. When A_FULL_TYPE is set to 0, A_FULL is asserted every time the FIFO almost-full condition is detected. When A_FULL_TYPE is set to $1, A_{\text {_ }}$ FULL is asserted only for any new almost-full condition.

A_FULL_TYPE	DECODE
0	A_FULL interrupt gets asserted when the almost full condition is detected. It is cleared by a Status 1 register read, but reasserts for every sample if the almost-full condition persists.
1	A_FULL interrupt gets asserted when the almost-full condition is detected. The interrupt gets cleared by a Status 1 register read, and does not reassert until the FIFO is read and then a new almost-full condition is detected.

FIFO_RO

FIFO_RO controls the behavior of the FIFO when the FIFO becomes completely filled with data. Push to FIFO is enabled when FIFO is full if FIFO_RO is set to 1 and old samples are lost. Both FIFO Write Pointer (0x08) and FIFO Read Pointer (0×09) increment for each sample after the FIFO is full. If FIFO_RO is set to 0 , new samples are lost and the FIFO is not updated. FIFO Write Pointer and FIFO Read Pointer do not increment until a sample is read from the FIFO.

FIFO_RO	
0	The FIFO stops on full.
1	The FIFO automatically rolls over on full.

System Sync (0×10)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	TIMING_SY S_RESET	-	-	-	-	-	-	-
Reset	0	-	-	-	-	-	-	-
Access Type	Write, Read	-	-	-	-	-	-	-

TIMING_SYS_RESET

TIMING_SYS_RESET bit works together with the MASTER bit to synchronize the timing sub systems of multiple AFEs.
Writing a one to the TIMING_SYS_RESET bits resets the NDIV divider. This should only be done when
BIOZ_BG_EN[2](0x20), BIOZ̄_I_EN[0](0x20) and BIOZ_Q_EN[1](0x20) are set to 0 . TIMING_SYS_RESET is ignored when BIOZ_BG_EN, BIOZ_I_EN or BIOZ_Q_EN are set to 1 .
If MASTER $=1$, then a sync pulse also appears on the TRIG pin.
If MASTER $=0$, writing 1 to the TIMING_SYS_RESET bit has no effect, but any sync pulse on the TRIG pin resets the NDIV divider.
TIMING_SYS_RESET is a self-clearing bit.

Value	Enumeration	Decode
0×0		Normal Mode
0×1		Master Slave Mode

System Configuration 1 (0×11)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	MASTER	DISABLE_I 2 C	-	-	-	-	SHDN	RESET
Reset	Ob0	0	-	-	-	-	0	0
Access Type	Write, Read	Write, Read	-	-	-	-	Write, Read	Write, Read

MASTER

The MASTER bit works together with the TIMING_SYS_RESET bit to synchronize the timing sub systems of mulitple AFEs.
When set to 1 b ' 1 , this bit causes this device to behave as a master. If MASTER is set to 1 'b0, the device is a slave for timing subsystem synchronization.
See TIMING_SYS_RESET for more information.

Value	Enumeration	Decode
0×0		Slave Mode. TRIG pin configured as input by TRIG_ICFG
0×1		Master Mode. TRIG configured as ouput by TRIG_OCFG<1:0>

DISABLE_I2C

When DISABLE_12C is set to 0 (default), the part uses the ${ }^{2} \mathrm{C}$ interface or SPI depending on the state of the CSB/ I2C_SEL pin. When DISABLE_I2C is set to 1 , the part uses the SPI.
For SPI, set this DISABLE_I2C to 1 during initialization after power-up. See the Digital Interface section for more information.

DISABLE_I2C	
0	CSB/I2C_SEL pin selects interface
1	Part uses SPI interface only

SHDN

Setting SHDN to 1 puts the MAX30009 into shutdown mode. While in shutdown mode, all configuration registers retain their values and write/read operations function normally. All interrupts are cleared to zero in this mode. Also, in this mode, the oscillator is shut down and the part draws minimum current. If this bit is asserted during an active conversion, then the conversion is aborted. Set SHDN to 0 to put the part back in normal mode. See the Shutdown Sequence section for more details.

SHDN	DECODE
0	Normal mode
1	Shutdown mode

RESET

The RESET bit is used to force a power-on-reset sequence. The sequence in Soft-Reset Sequence must be followed when asserting this bit, or registers may become unresponsive until a power-on reset is performed. This is a selfclearing bit and resets to 0 after the reset sequence is completed.

Value	Enumeration	Decode
0	NORMAL	The part is in normal operation. No action is taken.
1	RESET	The MAX30009 undergoes a forced power-on-reset sequence. All configuration, threshold, and data registers are reset to their power-on-state. This bit then automatically becomes ' 0 ' after the reset sequence is completed.

Pin Functional Configuration (0×12)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	-	-	-	-	INT_FCFG[1:0]	-	TRIG_ICFG	
Reset	-	-	-	-	0×1	-	0	
Access Type	-	-	-	-	Write, Read	-	Write, Read	

INT_FCFG

INT_FCFG controls the function and behavior of the INT pin.

INT_FCFG	DECODE
0×0	Disabled
0×1	INT is enabled and is cleared upon reading of any status register or FIFO.
0×2	INT is enabled and is self-clearing after 30μ s to 60μ s (depending on PLL_CLK).
0×3	INT is enabled and is self-clearing after 240μ s to 480μ s (depending on PLL_CLK).

TRIG_ICFG

TRIG_ICFG bit sets the input active edge of the TRIG pin.

TRIG_ICFG	DECODE
0	The TRIG pin active edge is falling.
1	The TRIG pin active edge is rising.

Output Pin Configuration (0×13)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	-	-	-	-	INT_OCFG[1:0]	TRIG_OCFG[1:0]		
Reset	-	-	-	-	0×0	0×0		
Access Type	-	-	-	-	Write, Read	Write, Read		

INT_OCFG

INT_OCFG[1:0] selects the output drive type for the INT pin.

INT_OCFG	
0×0	Open-drain, active-low output.
0×1	Active drive to DVDD and DGND; the active level is a high output.
0×2	Active drive to DVDD and DGND; the active level is a low output.
0×3	Do not use.

TRIG_OCFG

TRIG_OCFG selects the output drive type for the TRIG pin.

TRIG_OCFG	TRIG OUTPUT DRIVE TYPE
0×0	Open-drain, active-low output.
0×1	Active drive to DVDD and DGND; the active level is a high output.
0×2	Active drive to DVDD and DGND; the active level is a low output.
0×3	Do not use.

I2C Broadcast Address (0x14)

BIT	7	6	5	4	3	2	1	0
Field	I2C_BCAST_ADDR[6:0]							$\underset{\text { I2C_BCAST }}{ }$
Reset	0×00							0
Access Type	Write, Read							Write, Read

I2C_BCAST_ADDR

I2C_BCAST_ADDR is used to define the upper 7 bits of the $I^{2} \mathrm{C}$ address in $I^{2} \mathrm{C}$ broadcast mode (I2C_BCAST_EN = 1) when writing to multiple devices simultaneously using the ${ }^{2} \mathrm{C}$ serial interface. I2C_BCAST_ADDR is ignored in SPI mode.
See the $\mathrm{I}^{2} \mathrm{C}$ Broadcast section for more details.

I2C_BCAST_EN

I2C_BCAST_EN enables write transactions to multiple devices using the broadcast address programmed in I2C_BCAST_ADDR in $I^{2} \mathrm{C}$ mode. $I^{2} \mathrm{C}$ read transactions are not supported when I2C_BCAST_ADDR is used.
Note that for devices using SPI, broadcast write transactions can be achieved by driving the CSB pins low on multiple devices at the same time.

I2C_BCAST_EN	DECODE
0	Normal mode. $\mathrm{I}^{2} \mathrm{C}$ transactions are for one device only.
1	$\mathrm{I}^{2} \mathrm{C}$ broadcast mode. Write transactions to multiple devices are enabled.

PLL Configuration 1 (0×17)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Field	MDIV[9:8]	NDIV		KDIV[3:0]	$\mathbf{0}$		
Reset	0×1	0		0×0	PLL_EN		
Access Type	Write, Read, Dual	Write, Read		Write, Read	Write, Read		

MDIV

MDIV[9:0] multiplies the REF_CLK by MDIV + 1 to set the frequency of the PLL. MDIV[9:8] are the 2 MSBs of MDIV[9:0]. The lower 8 bits are in MDIV[7:0](0×18).
MDIV must be set such that PLL_CLK is between 14.0 MHz and 28.0 MHz .
For information on how to set MDIV[9:0], see the Timing Subsystem section.

NDIV

NDIV divides down the PLL clock as shown in the following table and sets the clock for the BioZ ADC.
For information on how to set BIOZ_NDIV, see the Timing Subsystem section.

NDIV	BioZ N-Divider
0	512
1	1024

KDIV

KDIV divides down the PLL clock as shown in the following table and sets the clock for the DDS DAC.

For information on how to set KDIV, see the Timing Subsystem section.

KDIV	BIOZ K DIVIDER
0×0	1
0×1	2
0×2	4
0×3	8
0×4	16
0×5	32
0×6	64
0×7	128
0×8	256
0×9	512
$0 \times A$	1024
$0 \times B$	2048
$0 \times C$	4096
$0 \times D$	8192
$0 \times E$	8192
$0 \times F$	8192

PLL_EN

PLL_EN enables the internal PLL, which multiplies the reference clock to a frequency between 14 MHz and 28 MHz . For details on the PLL, see the Timing Subsystem section. PLL_EN must be set to 1 before enabling BioZ measurements.

PLL_EN	
0	PLL is disabled
1	PLL is enabled

PLL Configuration 2 (0×18)

BIT	7	6	5	4	3	2	1	0
Field	MDIV[7:0]							
Reset	0xBB							
Access Type	Write, Read, Dual							

MDIV

MDIV[7:0] are the 8 LSBs of MDIV[9:0].
See MDIV[9:8](0x17) register for details.

PLL Configuration 3 (0×19)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	-	-	-	-	-	-	-	PLL_LOCK _WNDW
Reset	-	-	-	-	-	-	-	0
Access Type	-	-	-	-	-	-	-	Write, Read

PLL_LOCK_WNDW

PLL_LOCK_WNDW selects the time window for the PLL phase lock detector. The PLL lock detector compares the rising edges of FCLK and the output of the M divider, and determines the PLL to be locked if the difference between the two is less than PLL_LOCK_WNDW. Setting PLL_LOCK_WNDW = 1 helps to avoid false PHASE_UNLOCK interrupts when the FCLK reference has high jitter.

PLL_LOCK_WNDW	
0	1 PLL clock period
1	2 PLL clock periods (recommended when using high-jitter FCLK input)

PLL Configuration 4 ($0 \times 1 \mathrm{~A}$)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Field	-	REF_CLK_ SEL	CLK_FREQ _SEL		CLK_FINE_TUNE[4:0]		
Reset	-	0	0		0×00		
Access Type	-	Write, Read	Write, Read		Write, Read		

REF_CLK_SEL

REF_CLK_SEL	DECODE
0	Internal 32.0kHz or 32.768kHz oscillator used for REF_CLK
1	External oscillator used for REF_CLK

CLK_FREQ_SEL

CLK_FREQ_SEL selects the PLL reference-clock frequency. When using the internal oscillator (REF_CLK_SEL = 0), this bit sets the frequency of the internal oscillator. When using an external clock on the FCLK pin (REF_CLK_SEL = 1), this bit must match the frequency of the external clock. This bit sets the internal timing durations according to the clock frequency.

CLK_FREQ_SEL	
0	PLL reference clock is 32.0 kHz
1	PLL reference clock is 32.768 kHz

CLK_FINE_TUNE

CLK_FINE_TUNE is used to fine-tune the internal slow oscillator. This is accomplished by measuring the time between interrupts using a microcontroller, crystal-based real-time oscillator as a reference, and computing the error in the time between interrupts. CLK_FINE_TUNE is a 2's complement code with a resolution of 0.2% per LSB. The total range is $+3.0 \%$ to -3.2% around the factory trimmed value.

CLK_FINE_TUNE	SHIFT IN FREQUENCY (\%)	CLK_FINE_TUNE	SHIFT IN FREQUENCY(\%)
0×00	0.0	0×10	-3.2
0×01	0.2	0×11	-3.0
0×02	0.4	0×12	-2.8
0×03	0.6	0×13	-2.6
0×04	0.8	0×14	-2.4
0×05	1.0	0×15	-2.2
0×06	1.2	0×16	-2.0
0×07	1.4	0×17	-1.8
0×08	1.6	0×18	-1.6

CLK_FINE_TUNE	SHIFT IN FREQUENCY (\%)	CLK_FINE_TUNE	SHIFT IN FREQUENCY(\%)
0×09	1.8	0×19	-1.4
$0 \times 0 \mathrm{~A}$	2.0	$0 \times 1 \mathrm{~A}$	-1.2
$0 \times 0 \mathrm{~B}$	2.2	$0 \times 1 \mathrm{~B}$	-1.0
$0 \times 0 \mathrm{C}$	2.4	$0 \times 1 \mathrm{C}$	-0.8
$0 \times 0 \mathrm{D}$	2.6	$0 \times 1 \mathrm{D}$	-0.6
$0 \times 0 \mathrm{E}$	2.8	$0 \times 1 \mathrm{E}$	-0.4
$0 \times 0 \mathrm{~F}$	3.0	$0 \times 1 \mathrm{~F}$	-0.2

BioZ Configuration 1 (0x20)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Field	BIOZ_DAC_OSR[1:0]	BIOZ_ADC_OSR[2:0]	BIOZ_BG_ EN	BIOZ_Q_E N	BIOZ_I_EN		
Reset	0×0	0×0	0	0	0		
Access Type	Write, Read						

BIOZ_DAC_OSR

BIOZ_DAC_OSR[1:0] sets the over sample ratio of the BioZ DDS DAC. For information on how to set BIOZ_DAC_OSR[1:0], see Timing Subsystem.

BIOZ_DAC_OSR	DAC OVER SAMPLING RATIO
0×0	32
0×1	64
0×2	128
0×3	256

BIOZ ADC OSR

BIOZ_ADC_OSR[2:0] sets the over sample ratio of the BioZ I and Q ADCs. For information on how to set BIOZ_ADC_OSR[2:0], see Timing Subsystem.

BIOZ_ADC_OSR	ADC OVER SAMPLING RATIO
0×0	8
0×1	16
0×2	32
0×3	64
0×4	128
0×5	256
0×6	512
0×7	1024

BIOZ_BG_EN

BIOZ_BG_EN enables the BioZ bandgap bias required for all functions except the ULP LON. The bias power-up time is approximately 13 ms and should be kept on between subsequent measurements.

BIOZ_BG_EN	
0	BioZ bandgap bias disabled

BIOZ_I_EN

BIOZ_I_EN enables the bioimpedance drive and receive channels for the in-phase (I) component when set to 1. When set to 0 , the I receive channel is disabled.

BioZ Configuration 2 (0x21)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Field	BIOZ_DHPF[1:0]	BIOZ_DLPF[2:0]	BIOZ_CMP[1:0]	EN_BIOZ_T HRESH $^{\prime}$			
Reset	0×0	0×0	0×0	0			
Access Type	Write, Read	Write, Read	Write, Read	Write, Read			

BIOZ_DHPF

BIOZ_DHPF sets the BioZ channel digital high-pass filter cutoff frequency.

BIOZ_DHPF[1:0]	CUTOFF FREQUENCY (Hz)
0×0	Bypass
0×1	$0.00025 \times$ SR_BIOZ
0×2	$0.002 \times$ SR_BIOZ
0×3	$0.002 \times$ SR_BIOZ

BIOZ_DLPF

BIOZ_DLPF sets the BioZ channel digital low-pass filter cutoff frequency.

BIOZ_DLPF[2:0]	CUTOFF FREQUENCY (Hz)
0×0	Bypass
0×1	$0.005 \times$ SR_BIOZ
0×2	$0.02 \times$ SR_BIOZ
0×3	$0.08 \times$ SR_BIOZ
0×4 to 0×7	$0.25 \times$ SR_BIOZ

BIOZ_CMP

BIOZ_CMP selects which component of the BioZ measurement is used to compare with the thresholds programmed at BIOZ_HI_THRESH[7:0](0x27) and BIOZ_LO_THRESH[7:0](0x26).
If only one of I and Q channels is enabled, the disabled channel data is zero, and the magnitude of Z is same as the magnitude of the enabled channel data.

BIOZ_CMP[1:0]	
0×0	Magnitude of In-phase component, I only
0×2	Magnitude of Quadrature-phase component, Q only
0×2	Magnitude of Z, where $Z=$ SQRT $\left(I^{2}+Q^{2}\right)$
0×3	Reserved. Do not use

EN_BIOZ_THRESH

When EN_BIOZ_THRESH bit is set to 1 , the BioZ data I, Q, or Z (see BIOZ_CMP[2:1](0x21)) is compared with the thresholds programmed in the BIOZ_HI_THRESH[7:0](0x27) and BIOZ_LO_THRESH[7:0](0x26) registers. The BioZ high threshold can be used for AC lead-off detection in two-electrode systems, and the BioZ low threshold can be used for AC lead-off detection in four-electrode systems. The status is reflected in BIOZ_OVER[6](0x01) and BIOZ_UNDR[5](0x01).
When EN_BIOZ_THRESH is set to 0 , threshold detection is disabled.

BioZ Configuration 3 (0x22)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Field	BIOZ_EXT_ RES	LOFF_RAPI \bar{D}	BIOZ_VDRV_MAG[1:0]	BIOZ_IDRV_RGE[1:0]	BIOZ_DRV_MODE[1:0]		
Reset	0	0	0×0	0×0	0×0		
Access Type	Write, Read	Write, Read	Write, Read, Dual	Write, Read, Dual	Write, Read		

BIOZ_EXT_RES

BIOZ_EXT_RES selects the external REXT resistor or the internal range settings resistors.
When BIOZ_EXT_RES is set to 0 , the internal range resistors are used and the current magnitude is set by both BIOZ_VDRV_MAG $[5: 4](0 \times 22)$ and $B I O Z _I D R V _R G E[3: 2](0 \times 22)$. BIOZ_VDRV_MAG and BIOZ_IDRV_RGE can be automatically overwritten depending on the stimulus frequency according to patient safety requirements. Note that REXT is not disconnected, so the DRVXR pin should be unconnected. If DRVXR is connected, $R_{E X T}$ is connected in parallel with the internal range resistor, which results in a larger current magnitude.
When BIOZ_EXT_RES is set to 1, BIOZ_VDRV_MAG and the value of REXT set the current magnitude. BIOZ_VDRV_MAG is not automatically overwritten.

Value	Enumeration	Decode
0×0		Normal, no ext-res
0×1		Use external res

LOFF_RAPID

LOFF_RAPID bypasses the approximately 128 ms window delay for DC lead-off detection. The delay is beneficial in most cases to ignore unintended voltage spikes caused by line noise or electrode movement.

LOFF_RAPID	DECODE
0	A lead off condition must be sustained for approximately 128ms to trigger a DC lead-off status.
1	A lead-off condition immediately triggers a DC lead off status.

BIOZ_VDRV_MAG

In voltage drive mode, BIOZ_VDRV_MAG sets the voltage amplitude at DRVR, which is connected to EL1. BIOZ_IDRV_RGE is ignored.
In current drive mode, BIOZ_VDRV_MAG and BIOZ_IDRV_RGE set the current magnitude. See BIOZ_IDRV_RGE for details.

BIOZ_VDRV_MAG[1:0]	VOLTAGE MAGNITUDE $(\mathbf{m V} \mathbf{P K})$	VOLTAGE MAGNITUDE $\left(\mathbf{m V} \mathbf{R M S}^{\prime}\right.$
0×0	50	35.4
0×1	100	70.7

$\left.\begin{array}{|l|l|l|}\hline \text { BIOZ_VDRV_MAG[1:0] } & \begin{array}{c}\text { VOLTAGE } \\ \text { MAGNITUDE (mV }\end{array} \text { PK) }\end{array} \begin{array}{c}\text { VOLTAGE } \\ \text { MAGNITUDE } \\ \left(\mathbf{m V}_{\text {RMS }}\right)\end{array}\right]$

BIOZ_IDRV_RGE

BIOZ_IDRV_RGE[1:0] sets the value of the internal current-range resistor, which determines the current magnitude when BIOZ_EXT_RES = 0 .

BIOZ_IDRV_RGE[1:0]	INTERNAL RANGE RESISTOR VALUE
0×0	$552.5 \mathrm{k} \Omega$ (V ${ }_{\text {DRV resistor reduced by } 4 \mathrm{x})}$
0×1	$110.5 \mathrm{k} \Omega$
0×2	$5.525 \mathrm{k} \Omega$
0×3	276.25Ω

When BIOZ_EXT_RES = 1, the external resistor connected between DRVXR and DRVXC determines the drive current amplitude: Drive Current (A_{PK}) = DRVR (V_{PK}) / REXT.
BIOZ_VDRV_MAG and BIOZ_IDRV_RGE together select the magnitude of the stimulus current. When BIOZ_{-}IDRV_RGE $=0 \times 0$, the drive voltage at DRVR is reduced by a factor of four to support smaller current magnitudes.

BIOZ_IDRV_RGE[1:0]	BIOZ_VDRV_MAG[1:0]	AMPLITUDE OF $\mathrm{V}_{\mathrm{DRVR}}\left(\mathrm{mV} \mathrm{V}_{\mathrm{PK}}\right)$	AMPLITUDE OF $V_{\text {DRVR }}$ ($\mathrm{mV} \mathrm{V}_{\text {RMS }}$)	AMPLITUDE OF CURRENT (PEAK)	AMPLITUDE OF CURRENT (RMS)
0x0	0x0	12.5	8.8	23nA	16nA
0x0	0x1	25	17.7	45nA	32nA
0x0	0×2	62.5	44.2	113nA	80nA
0x0	0x3	125	88.4	226nA	160nA
0x1	0x0	50	35.4	452nA	320nA
0x1	0x1	100	70.7	905nA	640nA
0x1	0x2	250	177	$2.262 \mu \mathrm{~A}$	$1.6 \mu \mathrm{~A}$
0x1	0x3	500	354	$4.525 \mu \mathrm{~A}$	$3.2 \mu \mathrm{~A}$
0x2	0x0	50	35.4	$9.05 \mu \mathrm{~A}$	$6.4 \mu \mathrm{~A}$
0×2	0x1	100	70.7	$18.10 \mu \mathrm{~A}$	$12.8 \mu \mathrm{~A}$
0x2	0x2	250	177	$45.25 \mu \mathrm{~A}$	$32 \mu \mathrm{~A}$
0x2	0x3	500	354	$90.50 \mu \mathrm{~A}$	$64 \mu \mathrm{~A}$
0x3	0x0	50	35.4	$181 \mu \mathrm{~A}$	$128 \mu \mathrm{~A}$
0x3	0x1	100	70.7	$362 \mu \mathrm{~A}$	$256 \mu \mathrm{~A}$
0x3	0x2	250	177	$905 \mu \mathrm{~A}$	$640 \mu \mathrm{~A}$
0x3	0x3	500	354	1.81 mA	1.28 mA

BIOZ_DRV_MODE

BIOZ_DRV_MODE selects the stimulus type of the BioZ transmit channel.

BIOZ_DRV_MODE[1:0]	DRIVE TYPE
0×0	Current Drive. A sine-wave current is driven into the body through selectable electrode pins.
0×1	Voltage Drive. A sine-wave voltage is applied to EL1 while EL4 is driven to V $_{\text {MID_TX. }}$
0×2	H-Bridge Drive. EL1 and EL4 are alternately switched between AVDD and AGND.

BIOZ_DRV_MODE[1:0]	
0×3	Standby. The transmit channel is reset and held in a low-power state, driving the electrodes to V $_{\text {MID_TX }}$ TX

BioZ Configuration 4 (0x23)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Field	-	-	-	-	-	-	BIOZ_FAST MANUAL
BIOZ_FAST							
START_E							
Reset	-	-	-	-	-	0	0
Access Type	-	-	-	-	-	Write, Read	Write, Read

BIOZ_FAST_MANUAL

Together with BIOZ_FAST_START_EN, BIOZ_FAST_MANUAL is used to turn on the fast-start mode manually. The fast-start mode is kept until the register BIOZ_FAST_MANUAL is set back to 0 . See BIOZ_FAST_START_EN.

BIOZ_FAST_START_EN

BIOZ_FAST_START_EN enables the fast-start mode, which connects the BIP and BIN inputs to $\mathrm{V}_{\text {MID_RX }}$ through $10 \mathrm{k} \Omega$ resistors after enabling the I or Q channel. This quickly establishes a DC bias on the input electrōdes.
Normally, the fast-start mode is turned on at the very beginning when BioZ is enabled. The turn-on time is about $\sim 200 \mathrm{~ms}$, which is automatically set.
However, the fast mode can also be kept manually by programming the value of register BIOZ_FAST_MANUAL.
Three cases are listed as follows:

1. When BIOZ_FAST_START_EN is set to 0 , fast-start is disabled.
2. When BIOZ_FAST_START_EN is set to 1 and BIOZ_FAST_MANUAL is set to 0 , fast-start is enabled automatically for 200 ms at the very beginning when BIOZ _E_EN or $\mathrm{BIOZ}_{-} \mathrm{Q}_{-} \mathrm{EN}$ are enabled.
3. When BIOZ_FAST_START_EN is set to 1 and BIOZ_FAST_MANUAL is set to 1 , fast-start is kept enabled until BIOZ_FAST_MANŪAL is set to 0 .

BIOZ_FAST_START_EN	BIOZ_FAST_MANUAL	
0	x	Fast start is disabled
1	0	Fast start is enabled for approximately 200ms after BioZ is enabled.
1	1	Fast start is enabled until BIOZ_FAST_MANUAL is set to 0.

BioZ Configuration 5 (0x24)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Field	BIOZ_AHPF[3:0]				BIOZ_INA_- MODE	BIOZ_DM_ DIS	BIOZ_GAIN[1:0]
Reset	0×0	0	0	0×0			
Access Type	Write, Read	Write, Read	Write, Read	Write, Read			

BIOZ_AHPF

BIOZ_AHPF sets the corner frequency of the internal analog high-pass filter, or sets the filter resistance when using external capacitors on BIP and BIN. The resistance is center tapped with the midpoint connected to $\mathrm{V}_{\text {MID_RX }}$. When using external capacitors, the analog HPF corner frequency is set by the series capacitance and the selected commonmode resistance according to the following equation:

Low-Power, High-Performance Bioimpedance Analog Front-End

- $\mathrm{f}_{-3 \mathrm{~dB}}=1 /(2 \times \pi \times$ RAHPF \times CSERIES $)$
where C SERIES is the series combination of the external capacitors on BIP and BIN:
- C SERIES $=\left(\mathrm{C}_{\mathrm{BIP}} \times \mathrm{C}_{\mathrm{BIN}}\right) /\left(\mathrm{C}_{\mathrm{BIP}}+\mathrm{C}_{\mathrm{BIN}}\right)$

BIOZ_AHPF[3:0]	
0×0	100 Hz
0×1	200 Hz
0×2	500 Hz
0×3	$1,000 \mathrm{~Hz}$
0×4	$2,000 \mathrm{~Hz}$
0×5	$5,000 \mathrm{~Hz}$
0×6	$10,000 \mathrm{~Hz}$
0×7	Resistor opened, internal capacitors shorted (AHPF bypassed)
0×8	$42.4 \mathrm{M} \Omega$, internal capacitors shorted
0×9	$21.2 \mathrm{M} \Omega$, internal capacitors shorted
$0 \times \mathrm{A}$	$8.4 \mathrm{M} \Omega$, internal capacitors shorted
$0 \times B$	$4.2 \mathrm{M} \Omega$, internal capacitors shorted
$0 \times \mathrm{C}$	$2.2 \mathrm{M} \Omega$, internal capacitors shorted
$0 \times \mathrm{D}$	$848 \mathrm{k} \Omega$, internal capacitors shorted
$0 \times E$	$848 \mathrm{k} \Omega$, internal capacitors shorted
$0 \times \mathrm{Re}$	Resistor opened, internal capacitor shorted (AHPF bypassed)

BIOZ_INA_MODE

BIOZ_INA_MODE sets BioZ receive channel's Instrumentation Amplifier (INA) power mode.

BIOZ_INA_MODE	
0	BioZ INA is in high power mode (low noise mode)
1	BioZ INA is in low power mode

BIOZ_DM_DIS

BIOZ_DM_DIS disables the BioZ receive channel demodulators to allow a direct conversion of the differential input voltage across BIP and BIN.

BIOZ_DM_DIS	
0	BioZ demodulation clock enabled
1	BioZ demodulation clock disabled

BIOZ GAIN

BIOZ_GAIN sets the combined gain of the BioZ receive channel's INA and PGAs.

BIOZ_GAIN[1:0]	TOTAL GAIN (V/V)	INA GAIN (V/V)	PGA GAIN (V/V)
0×0	1	1	1
0×1	2	2	1
0×2	5	2	2.5
0×3	10	2	5

BioZ Configuration 6 (0x25)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Field	BIOZ_EXT_ CAP	BIOZ_DC RESTORE	BIOZ_DRV _RESET	BIOZ_DAC _RESET	BIOZ_AMP_RGE[1:0]	BIOZ_AMP_BW[1:0]	
Reset	1	0	0	0	0×0	0×0	
Access Type	Write, Read						

BIOZ_EXT_CAP

BIOZ_EXT_CAP selects the external capacitor CEXT connected between DRVXC and DRVSJ, which AC-couples the stimulus current in the current mode, thus preventing DC current from passing into the patient stimulus electrodes. When not using an external capacitor, short DRVXC and DRVSJ.

BIOZ_EXT_CAP	DECODE
0	No external capacitor used. The internal switch shorts the DRVXC and DRVSJ pins together with a drain to source resistance of approximately 100.
1	External capacitor used. The internal switch is open, and AC current is coupled through the external capacitor.

BIOZ_DC_RESTORE

BIOZ_DC_RESTORE closes the DC_RESTORE switch in the current-generator amplifier circuit, which applies a feedback resistance of approximately $10 \mathrm{M} \Omega$
to the current-drive amplifier. This maintains the DC bias of the drive electrodes during a lead-off event, which reduces the amplifier setting time when the lead is reconnected.
When using external AC-coupling capacitors on the pins assigned to DRVP or DRVN, set DC_RESTORE to 1 to absorb any DC offset currents and prevent amplifier saturation.

BIOZ_DC_RESTORE	DECODE
0	DC_RESTORE switch is open. No feedback resistance is applied to the current drive amplifier.
1	DC_RESTORE switch is closed. A $10 \mathrm{M} \Omega$ feedback resistance is applied to the current-drive amplifier.

BIOZ_DRV_RESET

BIOZ_DRV_RESET places the BioZ transmit channel in a reset state by disabling the DDS DAC and closing the RESET switch of the current-drive amplifier. This shorts the feedback network of the amplifier, configuring it as a unity gain buffer and driving both drive electrodes to $\mathrm{V}_{\text {MID_TX. }}$

BIOZ_DRV_RESET	DECODE
0	Normal Operation. The RESET switch is open.
1	Reset Condition. The DDC DAC is disabled and the RESET switch is closed, shorting the current drive amplifier feedback.

BIOZ_DAC_RESET

BIOZ_DAC_RESET forces the DDS DAC output to zero. The human body load is driven by the reference voltage $\mathrm{V}_{\text {MID_TX }}$, and the AC current going through the human body load is zero.

BIOZ_AMP_RGE

BIOZ_AMP_RGE selects the output stage option for the voltage-drive amplifier and current-drive amplifier within the BioZ transmit channel. Higher strength is recommended for higher output current loading. Higher settings increase supply-current consumption.
Match these settings with the BIOZ_IDRV_RGE setting.

> Low-Power, High-Performance Bioimpedance Analog Front-End

BIOZ_AMP_RGE[1:0]	BIOZ AMPLIFIER RANGE
0×0	Low
0×1	Medium-Low
0×2	Medium-High
0×3	High

BIOZ_AMP_BW

BIOZ_DRV_BW sets the gain bandwidth of the voltage-drive amplifier and current-drive amplifier within the BioZ transmit channel. Higher bandwidth is recommended for high-frequency applications including Bioimpedance Analysis and Impedance Cardiography. Low bandwidth is recommended for low-frequency applications including Galvanic Skin Response to reduce power consumption.

BIOZ_AMP_BW[1:0]	BIOZ AMPLIFIER BANDWIDTH
0×0	Low
0×1	Medium-Low
0×2	Medium-High
0×3	High

BIOZ Low Threshold (0x26)

BIT	7	6	5	4	3	2	1	0
Field	BIOZ_LO_THRESH[7:0]							
Reset	0×00							
Access Type	Write, Read							

BIOZ_LO_THRESH

BIOZ_LO_THRESH sets the BioZ under-range threshold.
If the BioZ measurement selected by BIOZ_CMP is within the symmetric thresholds defined by $\pm 32 \mathrm{x}$ BIOZ_LO_THRESH for longer than approximately 128ms, the BIOZ_UNDR status bit is asserted.

BIOZ High Threshold (0x27)

BIT	7	6	5	4	3	2	1	0
Field	BIOZ_HI_THRESH[7:0]							
Reset	0xFF							
Access Type	Write, Read							

BIOZ_HI_THRESH

BIOZ_HI_THRESH sets the BioZ over-range threshold.
If the BioZ measurement selected by BIOZ_CMP is outside of the symmetric thresholds defined by $\pm 2048 \mathrm{x}$ BIOZ_HI_THRESH for longer than approximately 128 ms , the BIOZ OVER status bit is asserted.
The default value (BIOZ_HI_THRESH= 0xFF) corresponds to a BioZ output upper threshold of 0x7F800, or about 99.6% of the full-scale range.

BioZ Configuration 7 (0x28)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	-	-	-	BIOZ_STBY ON	BIOZ_Q_CL K_PHASE	BIOZ_I_CL K_PHASE	BIOZ_INA CHOP_EN	BIOZ_CH_F SEL
Reset	-	-	-	0	0	0	0	0
Access Type	-	-	-	Write, Read				

BIOZ_STBYON

BIOZ_STBYON selects the BioZ receive channel's behavior when the transmit channel is in standby mode (BIOZ_DRV_MODE $=0 \times 3$). When in standby mode, the transmit channel does not generate a stimulus. So, the receive channel can be powered down in most cases.

BIOZ_STBYON	RECEIVE CHANNEL BEHAVIOR IN STANDBY MODE
0	Disabled. The receive channel's amplifiers, demodulators, and ADCs are disabled.
1	Enabled. The BioZ receive channel's amplifiers, demodulators, and ADCs remain enabled.

BIOZ_Q_CLK_PHASE

BIOZ_Q_CLK_PHASE controls the phase of the Q channel's demodulator. Changing the phase of the demodulator can be used to compare the I and Q channel gains.

BIOZ_Q_CLK_PHASE	DECODE
0	Normal Operation. The Q channel demodulator's clock is in quadrature phase to the stimulus signal.
1	I Phase. The Q channel demodulator's clock is in phase with the stimulus signal.

BIOZ_I_CLK_PHASE

BIOZ_I_CLK_PHASE controls the phase of the I channel's demodulator. Changing the phase of the demodulator can be used to compare the I and Q channel gains.

BIOZ_I_CLK_PHASE	DECODE
0	Normal Operation. The I channel demodulator's clock is in phase to the stimulus signal.
1	Q Phase. The I channel demodulator's clock is in quadrature phase with the stimulus signal.

BIOZ_INA_CHOP_EN

BIOZ_INA_CHOP_EN enables chopping in the BioZ receive channel's instrumentation amplifier. The chopping frequency is $\mathrm{BIOZ}_{-} \mathrm{ADC}$ _CLK / 2. INA chopping is recommended except when F_BIOZ = BIOZ_ADC_CLK / 2.

BIOZ_INA_CHOP_EN	DECODE
0	BIOZ_ADC_CLK / 2 chopping disabled
1	BIOZ_ADC_CLK / 2 chopping enabled

BIOZ_CH_FSEL

BIOZ_CH_FSEL selects the chopping frequency of the BioZ receive channel PGA and AAF.
Set to 1 if the F _ BIOZ is equal to BIOZ _ADC_CLK
/ 8. Otherwise, set to 0.Note: The synthesis frequency must not equal the PGA chopping frequency or the correlator does not work. Use BIOZ_CH_FSEL to ensure they are not equal.

BIOZ_CH_FSEL	DECODE
0	BioZ PGA chopping frequency is $\mathrm{f}_{\mathrm{BIOZ}}^{\text {_ADC_CLK }} / 8$
1	BioZ PGA chopping frequency is $\mathrm{f}_{\mathrm{BIOZ}}^{\text {_ADC_CLK }} / 4$

BioZ Mux Configuration 1 (0x41)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	BMUX_RSEL[1:0]	BMUX_BIS T_EN	-	-	CONNECT_ CAL_ONLY	MUX_EN	CAL_EN	
Reset	0×0	0	-	-	0	0	0	
Access Type	Write, Read	Write, Read	-	-	Write, Read	Write, Read	Write, Read	

BMUX_RSEL

BMUX_RSEL selects the value of the resistive calibration load applied across DRVP/BIP and DRVN/BIN for non-GSR applications. This load is only applied when BMUX_BIST_EN $=1$. The resistor error is measured during factory test, and the error value is saved in BIST_R_ERR[7:0](0x44).

BMUX_RSEL[1:0]	CALIBRATION RESISTANCE ($\mathbf{\Omega}$)
0×0	5100
0×1	900
0×2	600
0×3	280

BMUX_BIST_EN

BMUX_BIST_EN enables the built-in self-test resistor between DRVP/BIP and DRVN/BIN for non-GSR applications. To avoid external interference, disable both MUX_EN and CAL_EN when using BMUX_BIST_EN. The resistive value is selected by BMUX_RSEL.

BMUX_BIST_EN	
0	Disabled. The internal resistive load is disconnected.
1	Enabled. The internal resistive load is connected between DRVP and BIP, and DRVN and BIN.

CONNECT_CAL_ONLY

When both MUX_EN and CAL_EN are set to 1, enabling CONNECT_CAL_ONLY connects only the CAL1 to CAL4 pins, and disconnects the ELx pins. See MUX_EN for details.

CAL	CONNECT_CAL_ONLY	Use Case
0	0	EL1-EL4 connected only
0	1	EL1-EL4 connected only
1	0	CAL + EL1-EL4 connected
1	1	CAL connected only

MUX_EN

MUX_EN enables the BioZ input/output MUX connections to the ELx pins and/or CALx pins selected by DRVP_ASSIGN, DRVN_ASSIGN, BIP_ASSIGN, BIN_ASSIGN, CAL_EN, and CONNECT_CAL_ONLY.

MUX_EN	CAL_EN	CONNECT_CAL_ONLY	DECODE
0	X	X	MUX Disabled. All ELX and CALx pins are disconnected.

Low-Power, High-Performance Bioimpedance Analog Front-End

MUX_EN	CAL_EN	CONNECT_CAL_ONLY	DECODE
1	0	x	ELx pins are connected according to BIP_ASSIGN, BIN_ASSIGN, DRVP_ASSIGN, and DRVN_ASSIGN. CALx pins are disconnected.
1	1	0	ELx pins are connected according to BIP_ASSIGN, BIN_ASSIGN, DRVP_ASSIGN, and DRVN_ASSIGN. CALx pins are also connected.
1	1	1	ELx pins are disconnected. CALx pins are connected only.

CAL_EN

CAL_EN connects the calibration pins (CAL1 to CAL4) of the BioZ input/output MUX to measure the external calibration resistor when MUX_EN = 1. See MUX_EN for details.

CAL_EN	DECODE
0	Calibration pins are disconnected.
1	Calibration pins are connected. CAL1 = DRVP, CAL2 = BIP, CAL3 = BIN, and CAL4 $=$ DRVN. Electrode pins E1, E2A, E2B, E3A, E3B, and E4 are disconnected.

BioZ Mux Configuration 2 (0x42)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	BMUX_GSR_RSEL[1:0]	GSR_LOAD _EN	-	-	-	EN_EXT_IN LOAD	EN_INT_IN LOAD	
Reset	0×0	0	-	-	-	0	0	
Access Type	Write, Read	Write, Read	-	-	-	Write, Read	Write, Read	

BMUX_GSR_RSEL

BMUX_GSR_RSEL selects the value of the resistive calibration load applied across DRVP/BIP and DRVN/BIN for GSR applications. This load is only applied when GSR_LOAD_EN = 1 .

BMUX_GSR_RSEL[1:0]	LOAD RESISTANCE (k』)
0×0	25.7
0×1	101
0×2	505
0×3	1000

GSR_LOAD_EN

GSR_LOAD_EN enables the built in GSR load resistor between DRVP/BIP and DRVN/BIN. To avoid external interference, disable both MUX_EN and CAL_EN when using GSR_LOAD_EN. The resistive value is selected by BMUX_GSR_RSEL.

GSR_LOAD_EN	DECODE
0	Disabled. The internal resistive load is disconnected.
1	Enabled. The internal resistive load is connected between DRVP and BIP, and DRVN and BIN.

EN_EXT_INLOAD

EN_EXT_INLOAD enables the external guard-trace-drive circuit, which outputs the buffered voltage from BIP and BIN onto the EL2A and EL3A pins.

EN_EXT_INLOAD	
0	External guard-drive circuit disabled.
1	External guard-drive circuit enabled.

EN_INT_INLOAD

EN_INT_INLOAD enables the circuit that compensates for input capacitive loading on BIN and BIP.

EN_INT_INLOAD	DECODE
0	Input capacitive loading compensation circuit disabled.
1	Input capacitive loading compensation circuit enabled.

BioZ Mux Configuration 3 (0×43)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Field	BIP_ASSIGN[1:0]	BIN_ASSIGN[1:0]	DRVP_ASSIGN[1:0]	DRVN_ASSIGN[1:0]			
Reset	0×0	0×0	0×0	0×0			
Access Type	Write, Read	Write, Read	Write, Read	Write, Read			

BIP_ASSIGN

BIP_ASSIGN selects the electrode pin used for the BioZ positive input (BIP) when MUX_EN $=1$. When CAL_EN $=1$, this selection is ignored and the electrode pins are disconnected.

BIP_ASSIGN[1:0]	ASSIGNED ELECTRODE PIN
0×0	EL1
0×1	EL2A
0×2	EL2B
0×3	Do not use.

BIN_ASSIGN

BIN_ASSIGN selects the electrode pin used for the BioZ negative input (BIN) when MUX_EN = 1. When CAL_EN = 1, this selection is ignored and the electrode pins are disconnected.

BIN_ASSIGN[1:0]	ASSIGNED ELECTRODE PIN
0×0	EL4
0×1	EL3A
0×2	EL3B
0×3	Do not use.

DRVP_ASSIGN

DRVP_ASSIGN selects the electrode pin used for the BioZ positive drive (DRVP) in the current mode when MUX_EN = 1. When CAL _ $\mathrm{EN}=1$, this selection is ignored and the electrode pins are disconnected.

In voltage or H -bridge mode, the BioZ positive drive only connects to EL1.
The EL1 MUX switch has lower on-resistance than EL2A and EL2B. So, assign DRVP to EL1 when using currents or $64 \mu \mathrm{~A}$ or greater.

BIOZ_DRV_MODE[1:0]	DRVP_ASSIGN[1:0]	ASSIGNED ELECTRODE PIN
0×0 or 0×3	0×0	EL1 (low resistance)
0×0 or 0×3	0×1	EL2A
0×0 or 0×3	0×2	EL2B
0×0 or 0×3	0×3	Do not use.
0×1	X	EL1
0×2	X	EL1

DRVN_ASSIGN

DRVN_ASSIGN selects the electrode pin used for the BioZ negative drive (DRVN) in the current mode when MUX_EN $=1$. When CAL_EN = 1, this selection is ignored and the electrode pins are disconnected.
In voltage or H -bridge mode, the BioZ negative drive only connects to EL4.
The EL4 MUX switch has lower on-resistance than EL3A and EL3B. So, assign DRVN to EL4 when using currents or $64 \mu \mathrm{~A}$ or greater.

BIOZ_DRV_MODE[1:0]	DRVN_ASSIGN[1:0]	ASSIGNED ELECTRODE PIN
0×0 or 0×3	0×0	EL4 (low resistance)
0×0 or 0×3	0×1	EL3A
0×0 or 0×3	0×2	EL3B
0×0 or 0×3	0×3	Do not use.
0×1	X	EL4
0×2	X	EL4

BioZ Mux Configuration 4 (0x44)

BIT	7	6	5	4	3	2	1	0
Field	BIST_R_ERR[7:0]							
Reset	0×00							
Access Type	Read Only							

BIST_R_ERR

The on-chip Built-In Self-Test (BIST) resistors are available to calibrate the BioZ channel magnitude/phase error. $5.1 \mathrm{k} \Omega$, $900 \Omega, 600 \Omega$, or 280Ω of resistors can be chosen by BMUX_RSEL. Due to process variations, the actual resistances vary by up to $\pm 25 \%$. During factory test, the actual resistance of the 600Ω resistor is measured with an accuracy of $\pm 1.5 \%$, and the error stored in the BIST_R_ERR field. The actual resistance (to within $\pm 1.5 \%$) can be calculated with the following equation, where BIST_R_ERR is a 2 's complement representation. The other values $(5.1 \mathrm{k} \Omega, 900 \Omega$, and 280Ω) are process-matched to the 600Ω resistor with approximately 2% precision.
$R_{\text {ACTUAL }}=R_{\text {NOMINAL }} \times(1+$ BIST_R_ERR / 512)
For example, when BIST_R_ERR = 64 and BMUX_RSEL $=0 \times 2, R_{\text {ACTUAL }}=600 \Omega \times(1+64 / 512)=675 \Omega \pm 1.5 \%$.
BIST_R_ERR is a read-only register.

DC Leads Configuration (0x50)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	EN_LON_D ET	EN_LOFF_ DET	EN_EXT_L OFF	EN_DRV_O OR	LOFF_IPOL	LOFF_IMAG[2:0]		
Reset	0	0	0	0	0	0×0		
Access Type	Write, Read							

EN_LON_DET

EN_LOT_DET enables Ultra-Low-Power (ULP) DC lead-on detection on the BIP and BIN inputs. ULP mode only functions when BioZ is not enabled (BIOZ_I_EN = BIOZ_Q_EN = 0).

EN_LON_DET	DECODE
0	ULP lead-on detection is disabled.

EN_LON_DET	DECODE
1	ULP lead-on detection is enabled.

EN_LOFF_DET

EN_LOFF_DET enables DC lead-off detection on the BIP and BIN inputs, and only functions when BioZ is enabled (BIOZ _I_EN or BIOZ _Q_EN = 1). When enabled, the lead-off status is reported by the DC_LOFF_PH, DC_LOFF_PL, DC_LOFF_NH, and DC_LOFF_NL status bits and interrupts.

EN_LOFF_DET	
0	BioZ DC lead-off detection is disabled.
1	BioZ DC lead-off detection is enabled.

EN_EXT_LOFF

EN_EXT_LOFF enables DC lead-off detection on the EL2B and EL3B pins when the EL2A and EL3A pins are being used as $\bar{A} C$-coupled BioZ inputs. EL2B and EL3B must be connected externally to the electrode side of the AC-coupling capacitors for this feature to function.

EN_EXT_LOFF	DECODE
0	DC lead-off detection is applied to the internal BIP and BIN nodes.
1	DC lead-off detection is applied externally through EL2B and EL3B for AC- coupled applications.

EN_DRV_OOR

EN_DRV_OOR enables the voltage monitor on DRVN to detect drive electrode lead-off conditions. If the total impedance between DRVP and DRVN is high, due to either the DRVP or DRVN electrode being disconnected, the AC voltage at DRVN is large, and triggers a DRV_OOR status and interrupt.

EN_DRV_OOR	DECODE
0	Drive voltage out-of-range detection is disabled.
1	Drive voltage out-of-range detection is enabled.

LOFF_IPOL

LOFF_IPOL sets the polarity of the matched DC current sources used for DC lead-off detection.

LOFF_IPOL	LEAD-OFF CURRENT POLARITY
0	Non-inverted. BIP sources current, BIN sinks current.
1	Inverted. BIP sinks current, BIN sources current.

LOFF_IMAG

LOFF_IMAG selects the DC lead-off current amplitude.

LOFF_IMAG[2:0]	DC CURRENT MAGNITUDE (nA)
0×0	0 (Current sources disabled)
0×1	5
0×2	10
0×3	20
0×4	50
0×5	100
0×6	100
0×7	100

DC Lead Detect Threshold (0x51)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
Field	-	-	-	-		LOFF_THRESH[3:0]	
Reset	-	-	-	-		0×0	
Access Type	-	-	-	-		Write, Read	

LOFF_THRESH

LOFF_THRESH selects the voltage threshold for the DC lead-off window comparators, which are centered at $V_{\text {MID_RX }}$. If the voltage of either BIP or BIN goes above the high threshold or below the low threshold for approximately 128 ms , the corresponding DC_LOFF status bit is set to 1 in register 0x01. If LOFF_RAPID $=1$, the 128 ms delay is bypassed and the status asserts immediately.

LOFF_THRESH[3:0]	DC LEAD-OFF THRESHOLD
0x0	$\mathrm{V}_{\text {MID_RX }} \pm 215 \mathrm{mV}$
0x1	$\mathrm{V}_{\text {MID_RX }} \pm 245 \mathrm{mV}$
0x2	$\mathrm{V}_{\text {MID_RX }} \pm 275 \mathrm{mV}$
0x3	$\mathrm{V}_{\text {MID_RX }} \pm 305 \mathrm{mV}$
0x4	$\mathrm{V}_{\text {MID_RX }} \pm 335 \mathrm{mV}$
0x5	$\mathrm{V}_{\text {MID_RX }} \pm 365 \mathrm{mV}$
0x6	$\mathrm{V}_{\text {MID_RX }} \pm 395 \mathrm{mV}$
0x7	$\mathrm{V}_{\text {MID_RX }} \pm 425 \mathrm{mV}$
0x8	$\mathrm{V}_{\text {MID_RX }} \pm 455 \mathrm{mV}$
0x9	$\mathrm{V}_{\text {MID_RX }} \pm 485 \mathrm{mV}$
0xA	$\mathrm{V}_{\text {MID_RX }} \pm 515 \mathrm{mV}$
0xB	$\mathrm{V}_{\text {MID_RX }} \pm 545 \mathrm{mV}$
0xC	$\mathrm{V}_{\text {MID_RX }} \pm 575 \mathrm{mV}$
0xD	$\mathrm{V}_{\text {MID_RX }} \pm 605 \mathrm{mV}$
0xE	$\mathrm{V}_{\text {MID_RX }} \pm 635 \mathrm{mV}$
0xF	$\mathrm{V}_{\text {MID_RX }} \pm 665 \mathrm{mV}$

Lead Bias Configuration 1 (0x58)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	-	-	-	-	RBIAS_VALUE[1:0]	EN_RBIAS__ BIP	EN_RBIAS_ BIN	
Reset	-	-	-	-	0×0	0	0	
Access Type	-	-	-	-	Write, Read	Write, Read	Write, Read	

RBIAS_VALUE

RBIAS_VALUE selects the BioZ input lead bias resistance, which is between BIP and $\mathrm{V}_{\text {MID_RX }}$ (EN_RBIAS_BIP $=1$), and BIN and $\mathrm{V}_{\text {MID_RX }}$ (EN_RBIAS_BIN = 1).

RBIAS_VALUE[1:0]	BIAS RESISTANCE (MS)
0×0	50
0×1	100

0×2	200
0×3	Do not use.

EN_RBIAS_BIP

EN_RBIAS_BIP enables lead bias on BIP. The resistor connecting BIP to $\mathrm{V}_{\text {MID }}$ RX is selected in RBIAS_VALUE.

EN_RBIAS_BIP	DECODE
0	BIP is not resistively connected to $\mathrm{V}_{\text {MID_RX. }}$
1	BIP is connected to $\mathrm{V}_{\text {MID_RX }}$ through a resistor (selected by RBIAS_VALUE).

EN_RBIAS_BIN

EN_RBIAS_BIN enables lead bias on BIN. The resistor connecting BIN to $\mathrm{V}_{\text {MID_RX }}$ is selected in RBIAS_VALUE.

EN_RBIAS_BIN	
0	BIN is not resistively connected to $\mathrm{V}_{\text {MID_RX }}$ DECODE
1	BIN is connected to $\mathrm{V}_{\text {MID_RX }}$ through a resistor (selected by RBIAS_VALUE).

Interrupt Enable 1 (0×80)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	A_FULL_E N	-	FIFO_DATA _RDY_EN	FREQ_UNL OCK_EN	FREQ_LOC K_EN	PHASE_UN LOCK_EN	PHASE_LO CK_EN	-
Reset	0	-	0	0	0	0	0	-
Access Type	Write, Read	-	Write, Read	-				

A_FULL_EN

Enables the A_FULL[7](0x00) status bit to be output to the INT output pin.

FIFO_DATA_RDY_EN

Enables the FIFO_DATA_RDY[5](0x00) status bit to be output to the INT output pin.

FREQ_UNLOCK_EN

Enables the FREQ_UNLOCK[4](0x00) status bit to be output to the INT output pin.

FREQ_LOCK_EN

Enables the FREQ_LOCK[3](0x00) status bit to be output to the INT output pin.

PHASE_UNLOCK_EN

Enables the PHASE_UNLOCK[2](0x00) status bit to be output to the INT output pin.

PHASE_LOCK_EN

Enables the PHASE_LOCK[1](0x00) status bit to be output to the INT output pin.

> Low-Power, High-Performance Bioimpedance Analog Front-End

Interrupt Enable 2 (0x81)

BIT	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Field	LON_EN	BIOZ_OVE R_EN	BIOZ_UND R_EN	DRV_OOR_O_ EN	DC_LOFF_ PH_EN	DC_LOFF_ PL_EN	DC_LOFF_ NH_EN	DC_LOFF_ NL_EN
Reset	0	0	0	0	0	0	0	0
Access Type	Write, Read							

LON_EN

Enables the LON[7](0x01) status bit to be output to the INT output pin.

BIOZ_OVER_EN

Enables the BIOZ_OVER[6](0x01) status bit to be output to the INT output pin.

BIOZ_UNDR_EN

Enables the BIOZ_UNDR[5](0x01) status bit to be output to the INT output pin.

DRV_OOR_EN

Enables the DRV_OOR[4](0x01) status bit to be output to the INT output pin.

DC_LOFF_PH_EN

Enables the DC_LOFF_PH[3](0x01) status bit to be output to the INT output pin.

DC_LOFF_PL_EN

Enables the DC_LOFF_PL[2](0x01) status bit to be output to the INT output pin.

DC_LOFF_NH_EN

Enables the DC_LOFF_NH[1](0x01) status bit to be output to the INT output pin.

DC_LOFF_NL_EN

Enables the DC_LOFF_NL[0](0x01) status bit to be output to the INT output pin.

Part ID (0xFF)

BIT	7	6	5	4	3	2	1	0
Field	PART_ID[7:0]							
Reset	0x42							
Access Type	Read Only							

PART_ID

Low-Power, High-Performance Bioimpedance Analog Front-End

Applications Information

Patient Safety

Whenever applying a voltage or current to a human body, patient safety must be the top priority. According to IEC $60601-1$, the maximum allowable AC patient auxiliary current under normal condition is $100 \mu \mathrm{~A}$ at low frequencies such as 50 Hz or 60 Hz . As frequency increases, the allowable current also increases. The end application designers are always responsible to ensure patient safety, and the MAX30009 does not guarantee that stimulus signals comply with IEC 60601-1.
To facilitate patient safety in the current-drive mode, the MAX30009 limits the drive current setting according to the stimulus frequency as shown in Table 10. If the host controller writes a value outside of the allowed range to either the frequency divider or the current magnitude register fields, BIOZ_VDRV_MAG[5:4](0x22) and BIOZ_IDRV_RGE[3:2](0x22) are automatically overwritten to the maximum allowed setting. To enable high-frequency, high-current stimulus, the host controller must first set fSTIM and then set IMAG. If the application uses the optional REXT to set the current magnitude, this lockout feature does not apply.
Table 10. Allowed Current Magnitudes vs. Frequency

FREQUENCY RANGE (Hz)	MAXIMUM CURRENT ($\mu \mathrm{\mu})$
<512	64
≥ 512	128
≥ 2048	256
≥ 8192	640
≥ 16384	1280

In the voltage or H-bridge drive mode, the MAX30009 does not limit the patient current, and compliance must be achieved with external current-limiting resistors between the drive electrodes, and the EL1 and EL4 pins. Choose the resistance to limit the current to $\mathrm{V}_{\text {MAG }} /(2 \times$ R SERIES) if the electrode and body impedances are very small. In the H -bridge mode, $V_{M A G}$ is equal to $A V D D$.

Typical Application Circuits

4-Electrode Device Supporting BIA/BIS, Respiration, or ICG

NOTES:

- FOR IEC 60601-1 SINGLE FAULT PATIENT SAFETY COMPLIANCE, EACH ELECTRODE PIN SHOULD HAVE A SERIES RESISTOR OR CAPACITOR TO LIMIT DC CURRENT INTO THE ELECTRODE IN THE CASE OF A SHORT OF THE ELx PIN TO A NEARBY POWER SUPPLY VOLTAGE OR GND. TO LIMIT THE DC CURRENT TO $50 \mu \mathrm{~A}$, THE SERIES RESISTANCE SHOULD BE $\geq(V S U P P L Y / 50 \mu \mathrm{~A})$, WHERE VSUPPLY IS THE HIGHEST NEARBY VOLTAGE.
- THE DIGITAL INTERFACE IS SHOWN IN SPI CONFIGURATION. $I^{2} C$ CONFIGURATION CAN BE SELECTED BY TYING CSB/I2C_SEL HIGH, TYING SDO/ ADDR LOW OR HIGH, AND ADDING PULLUP RESISTORS TO SDI/SDA AND SCLK/SCL.
- THE INT OUTPUT IS SHOWN IN PUSH-PULL CONFIGURATION, WHICH IS PROGRAMMED BY INT_OCFG[3:2](OX13). FOR OPEN-DRAIN CONFIGURATION, ADD A PULLUP RESISTOR

Typical Application Circuits (continued)

2-Electrode Device Supporting GSR/EDA

NOTES:

- FOR IEC 60601-1 SINGLE FAULT PATIENT SAFETY COMPLIANCE, EACH ELECTRODE PIN SHOULD HAVE A SERIES RESISTOR OR CAPACITOR TO LIMIT DC CURRENT INTO THE ELECTRODE IN THE CASE OF A SHORT OF THE ELx PIN TO A NEARBY POWER SUPPLY VOLTAGE OR GND. TO LIMIT THE DC CURRENT TO 50 1 A, THE SERIES RESISTANCE SHOULD BE $\geq(V S U P P L Y / 50 \mu A)$, WHERE VSUPPLY IS THE HIGHEST NEARBY VOLTAGE.
- THE DIGITAL INTERFACE IS SHOWN IN SPI CONFIGURATION. $I^{2} C$ CONFIGURATION CAN BE SELECTED BY TYING CSB/I2C_SEL HIGH, TYING SDO/ ADDR LOW OR HIGH, AND ADDING PULLUP RESISTORS TO SDI/SDA AND SCLKISCL.
- THE INT OUTPUT IS SHOWN IN PUSH-PULL CONFIGURATION, WHICH IS PROGRAMMED BY INT_OCFG[3:2](OX13). FOR OPEN-DRAIN CONFIGURATION, ADD A PULLUP RESISTOR.

> Low-Power, High-Performance Bioimpedance Analog Front-End

Typical Application Circuits (continued)

4-Electrode Wrist Device Supporting BIA and GSR

NOTES:

- FOR IEC $60601-1$ SINGLE FAULT PATIENT SAFETY COMPLAANCE, EACH ELECTRODE PIN SHOULD HAVE A SERIES RESISTOR OR CAPACITOR TO LIMIT DC CURRENT INTO THE ELECTRODE IN THE CASE OF A SHORT OF THE ELX PIN TO A NEARBY POWER SUPPLY VOLTAGE OR GND. TO LIIIT THE DC CURRENT TO 50HA, THE SERIES RESISTANCE SHOULD BE $\geq(V$ VUPPLY / $50 \mu A$), WHERE VSUPPLY IS THE HIGHEST NEARBY VOLTAGE.
- THE DIGITAL INTERFACE IS SHOWN IN SPI CONFIGURATION. I ${ }^{2}$ C CONFIGURATION CAN BE SELECTED BY TYING CSBIILC_SEL HIGH, TYING SDO/ ADDR LOW OR HIGH, AND ADDING PULLUP RESISTORS TO SDISDA AND SCLKISCL.
- THE INT OUTPUT IS SHOWN IN PUSH-PULL CONFIGURATION, WHICH IS PROGRAMMED BY INT_OCFG[3:2](OX13). FOR OPEN-DRAIN

CONFIGURATION, ADD A PULLUP RESISTOR.

Typical Application Circuits (continued)

2-Electrode Chest Device Supporting Respiration with ECG and PPG

NOTES:

- FOR IEC 60601-1 SINGLE FAULT PATIENT SAFETY COMPLIANCE, EACH ELECTRODE PIN SHOULD HAVE A SERIES RESISTOR OR CAPACITOR TO LIMIT DC CURRENT INTO THE ELECTRODE IN THE CASE OF A SHORT OF THE ELx PIN TO A NEARBY POWER SUPPLY VOLTAGE OR GND. TO LIMIT THE DC CURRENT TO $50 \mu A$, THE SERIES RESISTANCE SHOULD BE \geq (VSUPPLY/50 $/ 5 A$), WHERE VSUPPLY IS THE HIGHEST NEARBY VOLTAGE.
- THE DIGITAL INTERFACE IS SHOWN IN SPI CONFIGURATION. TO AVOID FALSE I ${ }^{2}$ C START CONDITIONS ON THE SHARED BUS, SET DISABLE_I2C[6](0X11) $=1$. ${ }^{2} C$ CONFIGURATION CAN BE SELECTED BY TYING CSB/I2C_SEL HIGH, TYING SDO/ADDR LOW OR HIGH, AND ADDING PULLUP RESISTORS TO SDIISDA AND SCLK/SCL.
- THE INT OUTPUT IS SHOWN IN PUSH-PULL CONFIGURATION, WHICH IS PROGRAMMED BY INT_OCFG[3:2](OX13). FOR OPEN-DRAIN CONFIGURATION, ADD A PULLUP RESISTOR.

Typical Application Circuits (continued)

2-Electrode Chest Device Supporting Respiration with ECG and Defibrillation Protection

Typical Application Circuits (continued)

6-Electrode Device Supporting Multiple Measurement Vectors

NOTES:

- FOR IEC 60601-1 SINGLE FAULT PATIENT SAFETY COMPLIANCE, EACH ELECTRODE PIN SHOULD HAVE A SERIES RESISTOR OR CAPACITOR TO LIMIT DC CURRENT INTO THE ELECTRODE IN THE CASE OF A SHORT OF THE ELX PIN TO A NEARBY POWER SUPPLY VOLTAGE OR GND. TO LIMIT THE DC CURRENT TO $50 \mu \mathrm{~A}$, THE SERIES RESISTANCE SHOULD BE $\geq(V$ SUPPLY $/ 50 \mu \mathrm{~A}$), WHERE VSUPPLY IS THE HIGHEST NEARBY VOLTAGE.
- THE DIGITAL INTERFACE IS SHOWN IN SPI CONFIGURATION. I ${ }^{2}$ C CONFIGURATION CAN BE SELECTED BY TYING CSB/I2C_SEL HIGH, TYING SDO/ ADDR LOW OR HIGH, AND ADDING PULLUP RESISTORS TO SDI/SDA AND SCLK/SCL.
- THE INT OUTPUT IS SHOWN IN PUSH-PULL CONFIGURATION, WHICH IS PROGRAMMED BY INT_OCFG[3:2](OX13). FOR OPEN-DRAIN CONFIGURATION, ADD A PULLUP RESISTOR.

Ordering Information

PART NUMBER	TEMP RANGE	PIN-PACKAGE
MAX30009ENA +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25 WLP
MAX30009ENA +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	25 WLP

[^0]
MAX30009

> Low-Power, High-Performance Bioimpedance Analog Front-End

Revision History

REVISION NUMBER	REVISION DATE	PAGES CHANGED	
0	$12 / 21$	Initial release	-
1	$2 / 22$	Updated General Description, Simplified Block Diagram, ${ }^{2}$ C Timing Characteristics, Pin Configuration	$1,2,14,20$

[^0]: + Denotes a lead(Pb)-free/RoHS-compliant package.
 T Denotes tape-and-reel.

