Radiation Tolerant Single Supply V_{IN} , Low V_{IN} , Low V_{OUT} , 3A LDO

Features

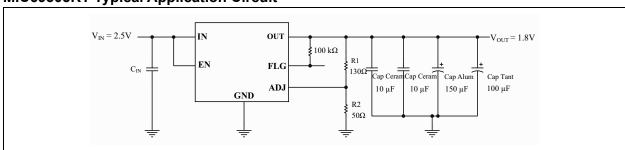
- Input Voltage Range V_{IN}: +1.65V to +5.5V
- Maximum Dropout (V_{IN} V_{OUT}) of 500 mV over Temperature
- · Adjustable Output Voltage Down to 0.5V
- · Soft Start Operation
- · Low Ground Current at Shutdown
- Stable at all Temperatures with 20 μF Ceramic Output Capacitor
- · Excellent Line and Load Regulation
- · Logic Controlled Shutdown
- · Thermal Shutdown and Current-Limit Protection
- Error Flag Output
- Military Temperature Range: -55°C to 125°C
- · Radiation Tolerant Data:
 - Total Dose: 50Krad (biased and unbiased)
 - Heavy Ion Single Event Effects (SEE): Latch-up Immunity > 78MeV·cm²/mg (+125°C)
- 8-Lead SOIC Plastic Package Exposed Pad 0.078g
- 10-Lead Flat Pack Ceramic Package Exposed Pad – 0.37g
- · All Devices are RoHS Compliant

Space Quality Grade

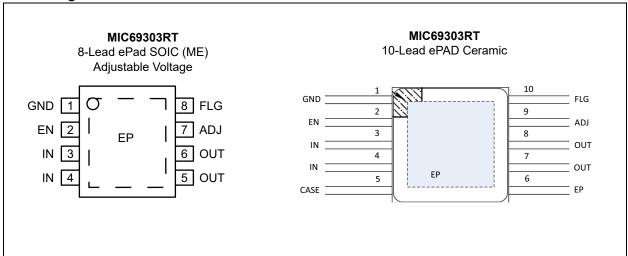
The hermetic MIC69303RT is manufactured in compliance with the following MIL Class Q or Class V requirements: screening testing, qualification testing and TCI/QCI specifications. The plastic MIC69303RT is compliant with AEC-Q100 automotive requirements with specific additional tests necessary for space applications. Screening and qualification flows are described in Aerospace and Defense AEQA0242/DS60001546 specifications available on the Microchip website.

General Description

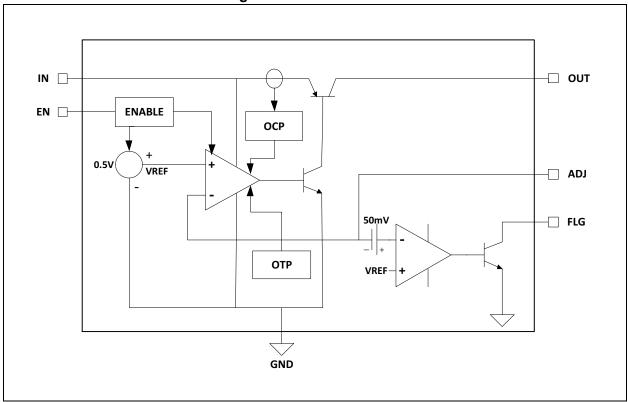
The MIC69303RT is a high reliability, Radiation Tolerant, high current, low voltage, adjustable output regulator, which supports output currents of 3A built to sustain the most demanding requirements of the Aerospace environment. Operating in temperatures ranging from -55°C to 125°C as required in Aerospace applications, the MIC69303RT is proposed in both ceramic and plastic packages.


Operating from a single low voltage supply of 1.65V to 5.5V, can supply output voltages as low as 0.5V at high currents, offering high precision and ultra-low dropout voltages of 500mV under worst-case conditions, making it ideal as the core power supply for FPGA, PLD, DSP, Microcontrollers and low dc to dc voltage conversion.

The low noise of the output makes it ideal for applications in sensitive RF circuits, post-regulation of switching power supplies and industrial power applications.


Featuring iCap design, the MIC69303RT is optimized for stability with low-value, low-ESR ceramic output capacitors.

To ensure that the MIC69303RT operates in its nominal range while exposed to radiation, on top of the 10 μF ceramic capacitors, a 150 μF chemical capacitor, and a 100 μF tantalum capacitor shall be connected to the output as close as possible to the device.


MIC69303RT Typical Application Circuit

Pin Configurations

MIC69303RT Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Input Voltage (V _{IN} to GND)	0.3V to +6V
Logic Input Voltage (V _{EN} to GND)	0.3V to (V _{IN} + 0.3V)
Fault Flag (V _{FLG} to GND)	0.3V to +6V
Maximum Junction Temperature (T _J)	+165°C
Storage Temperature (T _J)	55°C to +165°C
Lead Temperature (T _S)	260°C
ESD Rating (HBM)	2 kV
ESD Rating (CDM in Corner Pins)	>750V
ESD Rating (CDM on All Other Pins)	

Operating Ratings ††

Supply Voltage (V _{IN})	+1.65V to +5.5V
Enable Input Voltage (V _{EN})	0V to V _{IN}
Junction Temperature (T _J)	55°C ≤ T _J ≤ +165°C
Power Dissipation	Internally Limited

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. Functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

†† Notice: The device is not guaranteed to function outside its operating ratings.

- Note 1: Exceeding the absolute maximum rating may damage the device.
 - 2: Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5 k Ω in series with 100 pF.
 - 3: The device is not guaranteed to function outside operating range.

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: $V_{IN} = V_{OUT} + 1V$; $-55^{\circ}C < T_A < +125^{\circ}C$; $I_{OUT} = 10$ mA; $C_{OUT} = 20$ μF X7R Ceramic, unless noted (Note 1).								
Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions		
Power Input Supply								
Input Voltage Range	V_{IN}	1.65	_	5.5	>	_		
		_	1.2	5	mA	I _{OUT} = 10 mA		
Ground Pin Current	I _{GND}	_	12	30	mA	I _{OUT} = 1.5 A		
		_	32	75	mA	I _{OUT} = 3 A		
Ground Pin Current in Shutdown	_	_	1	10	μΑ	V _{EN} = 0V; V _{IN} = 2.0V; V _{OUT} = 0V		
Output Voltage								
Load Regulation	_	_	±0.3	_	%	I _{OUT} = 10 mA to 3A		
Line Regulation	_	_	0.2	0.3	%/V	V _{IN} = (V _{OUT} + 1.0V) to 5.5V (Note 3)		

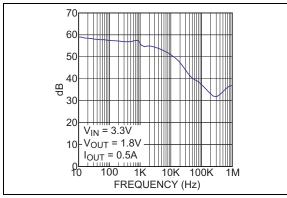
- **Note 1:** Exceeding the absolute maximum rating may damage the device.
 - 2: The device is not guaranteed to function outside its operating rating.
 - 3: The maximum allowable power dissipation of any TA (ambient temperature) is $(P_{D(max)} = T_{J(max)} T_A)/\theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature and the regulator will go into thermal shutdown.

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: V_{IN} = V_{OUT} + 1V; –55°C < T_A < +125°C; I_{OUT} = 10 mA; C_{OUT} = 20 μF X7R Ceramic, unless noted (**Note 1**).

uniess noted (Note 1).									
Parameter	Sym.	Min.	Тур.	Max.	Units	Conditions			
Reference (Adjustable)									
Feedback Reference Voltage (ADJ Pin)		0.485	0.5	0.515	V	±3.0%			
Feedback Bias Current	_	_	0.25	1.0	μΑ	V _{ADJ} = 0.5V			
Current Limit									
Current Limit	I _{LIM}	3.0	5.2	8	Α	V _{OUT} = 0V			
Power Dropout Voltage									
Dropout Voltage	V _{IN} –		200	300	mV	I _{OUT} = 1.5A			
Dropout voltage	V _{OUT}	_	275	500	mV	I _{OUT} = 3A			
Enable Input									
Enable Input Threshold	_	0.9		_	V	Regulator Enabled			
Enable input Theshold		_	_	0.1		Regulator Shut Down			
Enable Pin Bias Current		1	_	10		V _{EN} ≤ 0.2V (Regulator Shutdown)			
Enable Pin bias Current		1	7	10	μA	V _{EN} ≥ 0.8V (Regulator Enabled)			
Turn-On Time	t _{ON}	_	_	150	μs	90% of typical V _{OUT} ; V _{EN} = V _{IN}			
Fault Output									
Fault Threshold Voltage	_	5	10	20	%	% of V _{OUT} below nominal output (V _{OUT} Falling)			
Fault Hysteresis	1	_	2.0		%	_			
Fault Output Low Voltage	1	_		300	mV	I_{FLG} = 5 mA (sinking), V_{EN} = 1.65V			
Fault Leakage Current	_	_		1	μΑ	V _{FLG} = 5.0V; V _{EN} = 1.65V			
Thermal Protection									
Overtemperature Shutdown	_	_	165	_	°C	T _J rising			
Overtemperature Shutdown Hysteresis	_	_	10	_	°C	_			

- Note 1: Exceeding the absolute maximum rating may damage the device.
 - **2:** The device is not guaranteed to function outside its operating rating.
 - 3: The maximum allowable power dissipation of any TA (ambient temperature) is $(P_{D(max)} = T_{J(max)} T_A)/\theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature and the regulator will go into thermal shutdown.


TEMPERATURE SPECIFICATIONS

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions			
Temperature Ranges									
Operating Junction Temperature Range	T _J	-55	_	+165	°C				
Storage Temperature Range	T _S	-55	_	+165	°C	_			
Lead Temperature	T _{LEAD}	_	_	+260	°C	_			
Package Thermal Resistance									
Thermal Resistance, ePad SOIC 8-Ld	θ_{JC}	_	2.17	_	°C/W	Note 1			
Thermal Resistance, Ceramic 10-Ld	θ_{JC}	_	1.8	_	°C/W	Note 1			

Note 1: Simulated in vacuum conditions.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

FIGURE 2-1: Power Supply Rejection Ratio.

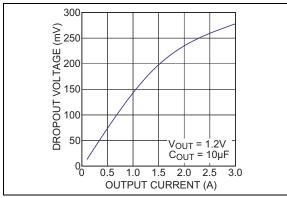


FIGURE 2-2: Dropout Voltage vs. Output Current.

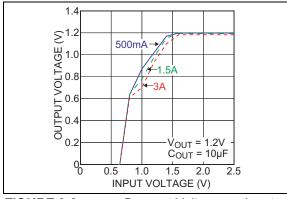


FIGURE 2-3: Dropout Voltage vs. Input Voltage.

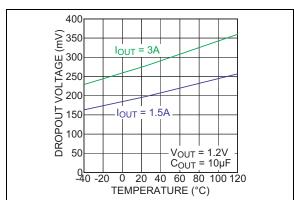


FIGURE 2-4: Dropout Voltage vs. Temperature.

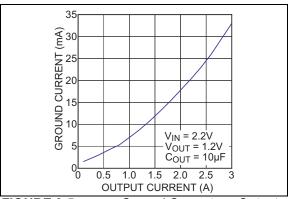


FIGURE 2-5: Ground Current vs. Output Current.

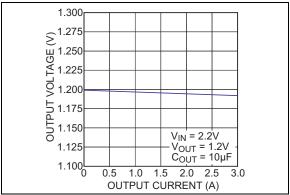


FIGURE 2-6: Load Regulation.

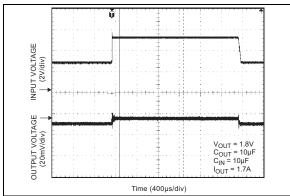


FIGURE 2-7: Line Transient.

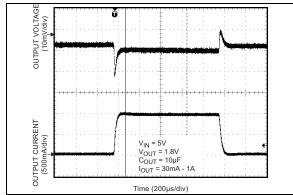


FIGURE 2-8: Load Transient.

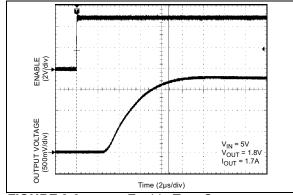


FIGURE 2-9: Enable Turn-On.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

Pin Number ePad 8L-SOIC	Pin Number 10L-Ceramic	Pin Name	Description
1	1	GND	Ground
2	2	EN	Enable (Input): CMOS compatible input. Logic high = enable, logic low = shutdown. Do not leave pin floating.
3, 4	3, 4	IN	Input voltage that supplies current to the output power device.
5, 6		OUT	Regulator Output.
	5		Connected to case
	6		Connected to EP
	7, 8	OUT	Regulator Output.
7	9	ADJ	Adjustable regulator feedback input. Connect to resistor voltage divider.
8	10	FLG	Error Flag (Output): Open collector output. Active-low indicates an output fault condition.
EP	EP	EP	Exposed pad. Connect to GND.

4.0 FUNCTIONAL DESCRIPTION

The MIC69303RT is an ultra-high performance low dropout linear regulator designed for high current applications requiring a fast-transient response. It utilizes a single input supply and has a very low dropout voltage perfect for low-voltage DC-to-DC conversion. The MIC69303RT requires a minimum number of external components.

The MIC69303RT regulator is fully protected from damage due to fault conditions offering constant current limiting and thermal shutdown.

The MIC69303RT operates from an input voltage of 1.65V to 5.5V. It is designed to drive digital circuits requiring low voltage at high currents (i.e., FPGA, PLDs, DSP, microcontroller, etc.). This regulator is available in adjustable output voltages. The regulator can support output voltages from 5V maximum down to 0.5V.

The μ Cap design of the MIC69303RT is optimized for stability with two low-value, low-ESR 10 μ F ceramic output capacitors to behave correctly under radiation environment in space applications.

Features of the MIC69303RT includes thermal shutdown, current limit protection, Fault Flag and Logic enable functions.

4.1 Input Supply Voltage

 $V_{\mbox{\footnotesize{IN}}}$ provides a high current to the collector of the pass transistor. The minimum input voltage is 1.65V, allowing conversion from low voltage supplies.

4.2 Output Capacitor

The MIC69303RT require a minimum of output capacitance to maintain stability. However, proper capacitor selection is important to ensure desired transient response. The MIC69303RT are specifically designed to be stable with low-ESR ceramic chip capacitors. A 20 μ F ceramic chip capacitor should satisfy most applications. Output capacitance can be increased without bound. See the Typical Performance Curves for examples of load transient response.

X7R dielectric ceramic capacitors are recommended because of their temperature performance. X7R-type capacitors change capacitance by only 15% over their operating temperature range and are the most stable type of ceramic capacitors.

4.3 Input Capacitor

An input capacitor of 1 μ F or greater is recommended when the device is more than 4 inches away from the bulk supply capacitance or when the supply is a battery. Small, surface mount, ceramic chip capacitors can be used for the bypassing. The capacitor should be placed within 1 inch of the device for optimal performance.

Larger values will help to improve ripple rejection by bypassing the input to the regulator further improving the integrity of the output voltage.

4.4 Minimum Load Current

The MIC69303RT regulator is specified between finite loads. If the output current is too small, leakage currents dominate and the output voltage rises. A 10 mA minimum load current is necessary for proper operation.

4.5 Adjustable Regulator Design

The MIC69303RT allows programming the output voltage anywhere between 0.5V and 5.0V with two resistors. The resistor value between V_{OUT} and the adjusted pin should not exceed 10 k $\!\Omega$. Larger values can cause instability. The resistor values are calculated by:

EQUATION 4-1:

$$V_{OUT} = 0.5 \times \left(\frac{R1}{R2} + 1\right)$$

Where:

 V_{OUT} = Desired output voltage.

4.6 Enable

The fixed output voltage versions of the MIC69303RT feature an active-high enable input (EN) that allows on-off control of the regulator. The current drain reduces to near zero when the device is shut down, with only microamperes of leakage current. EN may be directly tied to V_{IN} and pulled up to the maximum supply voltage.

4.7 Error Flag

The error flag is an open-collector output that can sink current during a fault condition. The error flag circuit monitors the output voltage and signals an error condition when the ADJ voltage is 10% below the reference voltage. The low output voltage can be caused by several problems, including an overcurrent fault (device in the current limit), over temperature protection or low input voltage.

4.8 Thermal Design

Linear regulators are simple to use. The most complicated design parameters to consider are thermal characteristics. Thermal design requires the following application-specific parameters:

- Maximum ambient temperature (T_A)
- Output current (I_{OUT})

- Output voltage (V_{OUT})
- Input voltage (V_{IN})
- Ground current (I_{GND})

First, calculate the power dissipation of the regulator from these numbers and the device parameters from this data sheet.

EQUATION 4-2:

$$P_D = (V_{IN} - V_{OUT}) \times I_{OUT} + V_{IN} \times I_{GND}$$

The ground current is approximated by using numbers from the Electrical Characteristics table or Typical Performance Curves section. The heat sink thermal resistance is then determined with this formula:

EQUATION 4-3:

$$\theta_{JA} = \left(\frac{T_{J(MAX)} - T_A}{P_D}\right) - (\theta_{JC} + \theta_{CS})$$

Where:

 $T_{J(MAX)} \le 125$ °C.

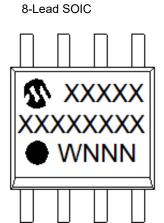
 θ_{CS} = \acute{B} etween 0°C/W and 2°C/W.

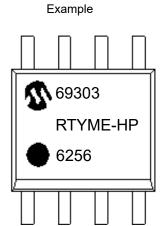
The heat sink may be significantly reduced in applications where the minimum input voltage is known and is large compared with the dropout voltage. Use a series input resistor to drop excessive voltage and distribute the heat between this resistor and the regulator. The low dropout properties of Microchip Super ßeta PNP regulators allow significant reductions in regulator power dissipation and the associated heat sink without compromising performance. When this technique is employed, a capacitor of at least 1.0 μF is needed directly between the input and regulator ground.

4.9 Temperature Protection

When the junction temperature exceeds approximately 165°C with a hysteresis of about 10°C, temperature protection shuts down the output and indirectly triggers the fault flag.

4.10 Short Circuit Current Protection


Under conditions where the output of the regulator is shorted to ground, internal circuitry will limit the device to source 5.2A typical.


4.11 Turn-on Time

The output voltage rise time to reach 90% of the nominal after enable on is 10 to 150 μ s maximum.

5.0 PACKAGING INFORMATION

5.1 **Package Marking Information**

Legend: XX...X Customer-specific information

Week code (week of January 1 is week '1') W

NNN Alphanumeric traceability code

Pb-free JEDEC designator for Matte Tin (Sn) (e3)

This package is Pb-free. The Pb-free JEDEC designator (@3)

can be found on the outer packaging for this package.

Note:

In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

10-Lead Ceramic

MIC69303RT SGC-E XXXXXXXXXX YYWW ALPH Example

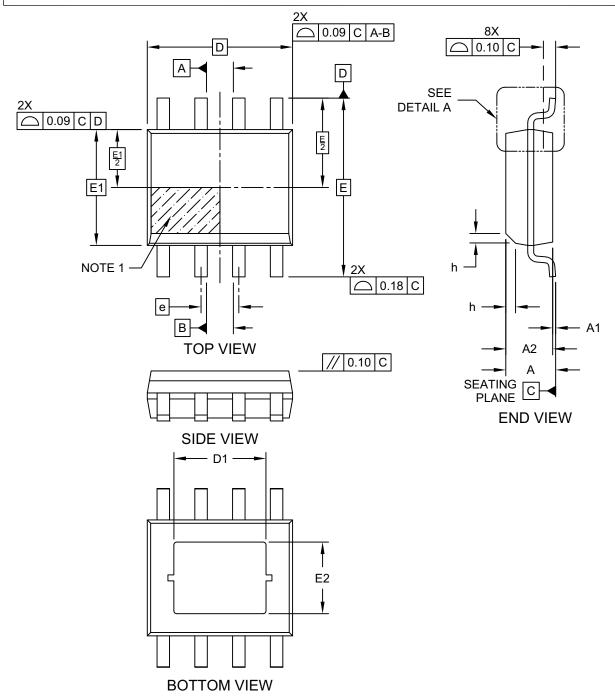
MIC69303RT SGC-E XXXXXXXXXX 2246 ALPH

Legend: MIC69303RT Device part number

SGC-E/SGC-MQ/SGC-SV Package type – Product Type)

XX...X Lot reference number)

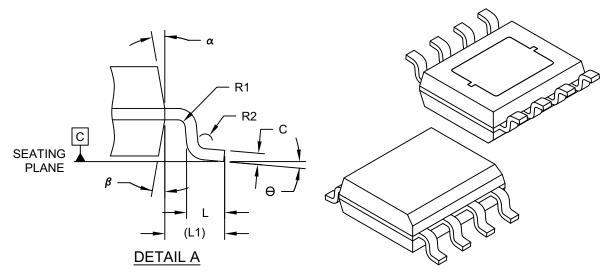
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')


ALPH Location code

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available

characters for customer-specific information.

8-Lead Small Outline Integrated Circuit Package (EQA) - 3.90 mm (1.50 ln) Body [SOIC] With 3.10x2.41 mm Exposed Pad


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-1136 Rev B Sheet 1 of 2

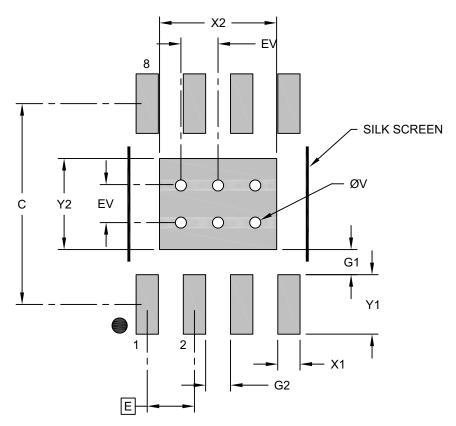
8-Lead Small Outline Integrated Circuit Package (EQA) - 3.90 mm (1.50 ln) Body [SOIC] With 3.10x2.41 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Terminals	N		8		
Pitch	е		1.27 BSC		
Overall Height	Α	1.43	1.55	1.68	
Standoff	A1	0.00	0.05	0.10	
Molded Package Thickness	A2	1.25	-	-	
Overall Length	D	4.89 BSC			
Exposed Pad Length	D1		3.10	-	
Overall Width	E	6.02 BSC			
Molded Package Width	E1	3.90 BSC			
Exposed Pad Width	E2	ı	2.41	-	
Terminal Width	b	0.35	0.41	0.49	
Lead Thickness	С	0.19	0.20	0.25	
Terminal Length	L	0.41	0.64	0.89	
Footprint	L1		1.04 REF		
Foot Angle	Φ	0°	5°	8°	
Lead Bend Radius	R1	0.07	-	-	
Lead Bend Radius	R2	0.07	-	-	
Mold Draft Angle	α	5°	-	15°	
Mold Draft Angle	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

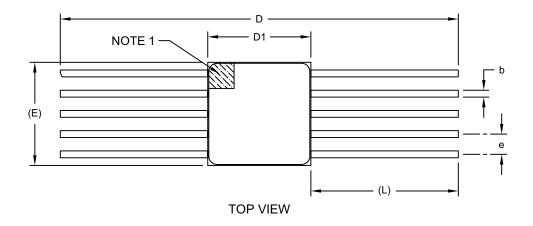
Microchip Technology Drawing C04-1136 Rev B Sheet 2 of 2

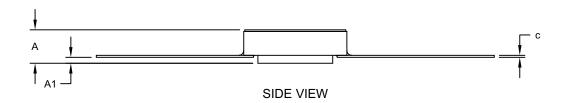
8-Lead Small Outline Integrated Circuit Package (EQA) - 3.90 mm (1.50 ln) Body [SOIC] With 3.10x2.41 mm Exposed Pad

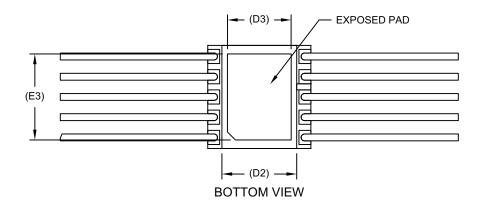
te: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		1.27 BSC	
Optional Center Pad Width	X2			3.15
Optional Center Pad Length	Y2			2.45
Contact Pad Spacing	С		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)	Y1			1.60
Contact Pad to Center Pad (X8)	G1	0.68		
Contact Pad to Contact Pad (X6)	G2	0.67		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

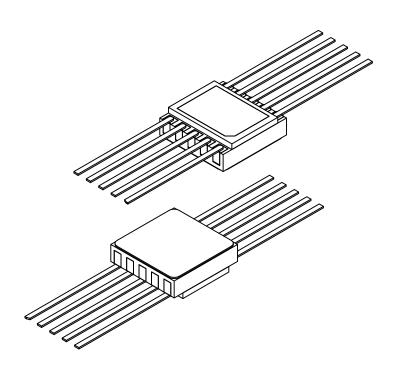

Notes:


- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process


Microchip Technology Drawing C04-1136 Rev B

10-Lead Ceramic Dual Flatpack (SGC) - 6.48x6.48 mm Body [CDFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-25641 Rev B Sheet 1 of 2

10-Lead Ceramic Dual Flatpack (SGC) - 6.48x6.48 mm Body [CDFP]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Terminals	N		10			
Pitch	е		1.27			
Overall Height	Α	2.23	2.43	2.63		
Standoff	A1	0.42	0.50	0.58		
Overall Length	D		25.00			
Ceramic Package Length	D1	6.18	6.48	6.78		
Pedestal Length	D2		4.699 REF			
Exposed Pad Length	D3		4.00 REF			
Overall Width	Е	6.18	6.48	6.78		
Exposed Pad Width	E3		5.40 REF			
Terminal Width	b	0.38	0.43	0.48		
Terminal Thickness	С	0.102	0.127	0.178		
Terminal Length	L		9.26 REF			

Notes:

Note:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Microchip Technology Drawing C04-25461 Rev B Sheet 2 of 2

ΝЛ		6	2	1	2		T
IVI	IC	O;	IJJ	U	J	$\mathbf{\Gamma}$	

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (December 2022)

• Initial release of this document.

M	C	RQ	3	Uろ	RT	•
IVI		UJ	' ' '	UJ		

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

XXX-XXX <u>Device</u> Part No. Package Type

Device: MIC69303: Single Supply V_{IN} , Low V_{IN} , Low V_{OUT} , 3A LDO

> RT: Radiation Tolerant

YME = 8-Lead Plastic SOIC -ePAD Package:

10-Lead Ceramic Dual Flatpack -ePad

-HP = HiRel Plastic -MQ =QML-Q Equivalent Type: QML-V Equivalent

Engineering Ceramic +25C

Examples:

a) MIC69303RTYME-HP: ,Single Supply V_{IN} ,

Low V_{IN} , Low V_{OUT} , 3A LDO,

8-Lead SOIC package (Note 1)

b) MIC69303RTSGC-E: Single Supply V_{IN} ,

Low V_{IN}, Low V_{OUT}, 3A LDO,

10-Lead Engineering Ceramic

c) MIC69303RTSGC-SV: Single Supply V_{IN} ,

Low V_{IN}, Low V_{OUT}, 3A LDO,

10-Lead Ceramic,

QML-V Equivalent Type package

(Note 1)

d) MIC69303RTSGC-MQ:Single Supply $V_{\rm IN}$,

Low V_{IN} , Low V_{OUT} , 3A LDO,

10-Lead Ceramic,

QML-Q Equivalent Type package

(Note 1)

Note 1: Future product. Contact Microchip for

availability.

ΝЛ		6	2	1	2		T
IVI	IC	O;	IJJ	U	J	$\mathbf{\Gamma}$	

NOTES:

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach. Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2022, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-1660-3

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Fax: 317-773-5453 Tel: 317-536-2380 **Los Angeles**

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270 Canada - Toronto

Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820